

PlexPCR® SARS-CoV-2

Multiplex realtime RT-PCR-assay voor de detectie van SARS-CoV-2

(€ 0123 IVD	UK CA				
Product		Platform	Aantal (reacties)	Catal	ogusnr.
PlexPCR [®] SARS	S-CoV-2	LC480 II CFX96 [™] Dx CFX96 Touch™	384	REF	1301384
Accessoireprod	ucten – Analy	sesoftware			
PlexPCR [®] SARS	G-CoV-2 (LC480))		REF	99021
PlexPCR [®] SARS	-CoV-2 (CFX)			REF	99022
EC REP	MedEnvoy Prinses Margrietplar 2595 AM Den Haag Nederland	ntsoen 33 – Suite 123			
••••	SpeeDx Pty Ltd Suite 102, National 4 Cornwallis Street, NSW 2015, Australi Tel: +61 2 9209 417	Innovation Centre Eveleigh ë '0, E-mail: tech@speedx.com.a	au		

UITSLUITEND VOOR PROFESSIONEEL GEBRUIK

Niet te koop in de VS

Inhoud

1	Productbeschrijving				
2	Beoogd gebruik				
3	Informatie over de pathogenen 4				
4	Inhoud van de kit 4				
5	Vervo	er en opslag	5		
6	Waar	schuwingen en voorzorgsmaatregelen	5		
6	.1	Algemeen	5		
6	.2	Laboratorium	5		
6	.3	Het behandelen van monsters	5		
6	.4	Test	5		
6	.5	Veiligheidsmaatregelen	5		
6	.6	Assay plugin waarschuwingen en voorzorgsmaatregelen	5		
7	Beno	digde materialen (niet meegeleverd)	6		
8	Princi	pe van de technologie	8		
9	Overz	zicht procedure	9		
10	Gede	tailleerde procedure	10		
1	0.1	Monsterafname, transport en opslag	10		
1	0.2	Monsterverwerking	10		
	10.2.1	Reagensvolumes voor de MGISP-960	10		
	10.2.2	Reagensvolumes voor de KingFisher Prep en de PurePrep	11		
1	0.3	Internal Control (IC) (interne controle [IC])	11		
	10.3.1	Internal Control (interne controle) op de MagNA Pure 96, KingFisher Flex en PurePrep 96	11		
1	0.4	Voorbereiding van realtime PCR	12		
	10.4.1	Voorbereiding mastermix	12		
11	Progr	ammering en analyse	12		
12	Interp	retatie van de resultaten	13		
13	Вере	rkingen	13		
14	Kwali		13		
15	Instru	cties voor de REDx™ FLOQ SARS-CoV-2 Positive Control (positieve controle)	14		
1	5.1	Gebruiksaanwijzing	14		
16	Prest	atiekenmerken	14		
1	6.1	Klinische prestaties	14		
	16.1.1	Klinisch onderzoek 1	14		
1	6.2	Analytische prestaties	15		
	16.2.1	Herhaalbaarheid en reproduceerbaarheid	15		
	16.2.2	Analytische gevoeligheid	17		
	16.2.3	Analytische specificiteit	20		
	16.2.4	In silico-analyse	21		
	16.2.5	Inclusiviteit	21		
	16.2.6	Potentieel interfererende substanties	21		
17	17 Klantondersteuning en technische ondersteuning				
18	18 Referenties				
19	19 Bijlage 1: LightCycler [®] 480 Instrument II				

19	.1	Het LightCycler® 480 Instrument II (LC480 II) programmeren	23
19	.2	Het opzetten van een macrosjabloon voor het LightCycler [®] 480 Instrument II	28
19	.3	Colour Compensation (kleurcompensatie) voor LightCycler® 480 Instrument II	35
19	.4	Interpretatie van de resultaten	35
20	Bijlag	e 2: Bio-Rad CFX96™ Dx en CFX96 Touch™ realtime PCR-systeem	37
20	.4	Het CFX96 [™] Dx en CFX96 Touch [™] realtime PCR-detectiesysteem (CFX96 Dx, CFX96 Touch) programmeren	37
20	.2	Interpretatie van de resultaten met behulp van de ingebouwde CFX-software	40
20	.3	Resultaten van de ingebouwde analyse exporteren	43
20	.4	Interpretatie van de resultaten met de PlexPCR SARS-CoV-2 (CFX)-analysesoftware	45
21	Bijlag	e A: Interpretatie van de resultaten	46
21	.1	FastFinder-platform – Minimale IT-vereisten	46
21	.2	Device set up (instellingen apparaat) (nieuwe gebruiker of nieuw apparaat)	47
2	21.2.1	Colour Compensation (Kleurcompensatie)	47
21	.3	Plug-in voor assays (nieuwe gebruiker)	48
21	.4	Monsternaamgeving	48
21	.5	Mixpartijnummers toevoegen	49
21	.6	Analyse	49
21	.7	Resultaten	50
21	.8	Referentiecurve	50
21	.9	Overzicht van de resultaten	51
21	.10	Resultaten exporteren	52
22	Woor	denlijst	53

1 Productbeschrijving

De *PlexPCR*[®] SARS-CoV-2-kit is een 1-wells qPCR-multiplex voor de detectie van ernstig acuut respiratoir syndroom coronavirus 2 (SARS-CoV-2). De test geeft 3 aflezingen; Aflezing 1 wijst op de aanwezigheid of afwezigheid van SARS-CoV-2 via detectie van het ORF1ab-gen (Open Reading Frame [open leesframe]); Aflezing 2 wijst op de aanwezigheid of afwezigheid van SARS-CoV-2 via detectie van het RdRp-gen (RNA-dependent RNA polymerase [RNA-afhankelijk RNA-polymerase]); Aflezing 3 is een RNA Internal Control (interne controle) (IC) voor het bewaken van de extractie-efficiëntie en de qPCR-remming. De *PlexPCR*[®] SARS-CoV-2-kit maakt gebruik van *PlexZyme*[®]-technologie voor specificiteit en superieure multiplexmogelijkheden.

Deze assay is gevalideerd op monsters die zijn geëxtraheerd met het MagNA Pure 96 System (Roche), de PurePrep 96 (Molgen) en het KingFisher[™] Flex monsterzuiveringsysteem (ThermoFisher), vloeistofbehandeling met de *PlexPrep*[™] (SpeeDx), en realtime detectie op het LightCycler[®] 480 II Instrument (LC480 II, Roche), het CFX96[™]Dx realtime PCR-detectiesysteem (CFX96 Dx, Bio-Rad), en het CFX96 Touch[™] realtime PCR-detectiesysteem (CFX96 Touch, Bio-Rad).

2 Beoogd gebruik

De **Plex**PCR[®] SARS-CoV-2-kit is een *in vitro* diagnostische realtime PCR-test via reverse-transcriptie (RT-qPCR-test) voor de kwalitatieve detectie van SARS-CoV-2.

De *PlexPCR*[®] SARS-CoV-2-kit is bedoeld als hulpmiddel bij de diagnose van SARS-CoV-2 en moet worden gebruikt in combinatie met klinische en andere laboratoriuminformatie.

De PlexPCR® SARS-CoV-2-kit kan worden gebruikt met de volgende soorten specimen: nasofaryngeale uitstrijkjes.

De **Plex**PCR[®] SARS-CoV-2-kit is bedoeld voor gebruik in een professionele omgeving, zoals in ziekenhuizen, referentie- en overheidslaboratoria. De kit is niet bedoeld voor zelftests, thuisgebruik of point-of-care-gebruik.

De doelgroep van de **Plex**PCR[®] SARS-CoV-2-kit is symptomatische patiënten bij wie de zorgverlener op grond van de klinische presentatie en/of voorgeschiedenis vermoedt dat zij besmet zijn met het ernstig acuut respiratoir syndroom coronavirus (SARS-CoV-2).

3 Informatie over de pathogenen

Op 31 december 2019 werd voor het eerst een uitbraak van luchtwegaandoeningen van onbekende etiologie in de stad Wuhan in China aan de Wereldgezondheidsorganisatie (WHO) gerapporteerd.¹ Vervolgens werd een nieuw coronavirus geïdentificeerd en SARS-CoV-2 (ernstig acuut respiratoir syndroom coronavirus 2) genoemd, die de overdraagbare ziekte COVID-19 (coronavirusziekte 2019) veroorzaakt.² SARS-CoV-2 heeft sindsdien gezorgd voor een wereldwijde pandemie met meer dan 75 miljoen bevestigde gevallen en meer dan 1,5 miljoen doden per eind september 2020.³

4 Inhoud van de kit

Aantal tests: 384 reacties

Tabel 1. Inhoud van de kit voor de <i>PlexPCR[®]</i> SARS-CoV-2 (catalogusnr. 1301384)				
Kleur dop	Inhoud	Beschrijving	Hoeveelheid	
Bruin	SARS-CoV-2-mix, 20x	Mix met oligonucleotiden^ voor amplificatie en detectie van SARS- CoV-2 en Internal control (interne controle) voor LC480 II en CFX	2 x 150 µL	
Groen	Plex Mastermix, 2x	Mastermix met de benodigde componenten voor qPCR inclusief dNTP's, MgCl ₂ , DNA-polymerase en -buffer	2 x 1,2 mL	
Neutraal	RTase, 100x	Reverse transcriptase-enzym voor het genereren van complementair DNA (cDNA) uit RNA-sjabloon	1 x 90 µL	
Zwart	RNase Inhibitor (RNase-remmer), 50x	RNase-remmer	1 x 135 µL	
Paars	Internal Control (interne controle) RNA [#]	Internal control cells (interne controlecellen) met RNA-matrijs voor interne controle voor het bepalen van de efficiëntie van de extractie, de reverse-transcriptie en de amplificatie	1 x 200 µL	
Blauw	Nuclease Free Water (nucleasevrij water)	Water van PCR-kwaliteit	1 x 1 mL	

Bewaar buisjes met matrijzen gescheiden van oligomixen, bijvoorbeeld in een ruimte voor het hanteren van matrijzen of nucleïnezuren

^ Oligonucleotiden zijn PCR-primeparen PlexZyme®-enzymen en fluorescerende sondes

* Voldoende voor 384 x 10 µL tests. Extra volume geleverd voor compatibiliteit met instrumenten voor vloeistofbehandeling, gevalideerd met *PlexPrep™* (SpeeDx).

5 Vervoer en opslag

- De componenten van de *PlexPCR*[®] SARS-CoV-2-kits worden op droogijs of met bevroren gelpacks verzonden. Alle componenten moeten na ontvangst worden opgeslagen bij een temperatuur tussen -25 °C en -15 °C. Het wordt aanbevolen om het aantal invries-ontdooicycli tot 10 te beperken.
- Als de kit wordt opgeslagen onder de aanbevolen omstandigheden en er op de juiste wijze mee wordt omgegaan, blijft de activiteit van de kit behouden tot de op het etiket vermelde houdbaarheidsdatum. Niet meer gebruiken na de houdbaarheidsdatum.

6 Waarschuwingen en voorzorgsmaatregelen

6.1 Algemeen

- Alleen voor *in vitro* diagnostisch gebruik.
- Lees voor gebruik deze gebruiksaanwijzing zorgvuldig door. Volg de beschreven procedures nauwkeurig om de betrouwbaarheid van de testresultaten te garanderen. Elke afwijking van deze procedures kan de prestaties van de test beïnvloeden.
- Gebruikers moeten voldoende getraind zijn in het gebruik van de *PlexPCR®* SARS-CoV-2-test.
- Elk ernstig incident moet worden gemeld aan de fabrikant en de bevoegde autoriteit van de lidstaat waar de gebruiker en/of de patiënt is gevestigd.

6.2 Laboratorium

- Het wordt aanbevolen om de monsterbereiding/extractie, de mastermixbereiding, het toevoegen van monsters en de thermocycling in ruimtelijk gescheiden ruimtes uit te voeren. Op zijn minst moet het PCR-apparaat zich in een andere ruimte bevinden dan de ruimten waar de reacties worden voorbereid.
- Het wordt aanbevolen om routinematige laboratoriumvoorzorgsmaatregelen te volgen. Draag geschikte persoonlijke beschermingsmiddelen zoals handschoenen, oogbescherming en een laboratoriumjas bij het hanteren van reagentia.
- In medische monsters kunnen pathogene organismen aanwezig zijn. Behandel alle biologische monsters als mogelijk infectieus en volg de veiligheidsprocedures van uw instituut voor het omgaan met chemische stoffen en biologische monsters.
- Volg de procedures voor het verwijderen van gevaarlijk afval van uw instelling voor de juiste verwijdering van monsters, reagentia en andere mogelijk besmette materialen

6.3 Het behandelen van monsters

- Monsters moeten worden verzameld, vervoerd en bewaard met behulp van standaard laboratoriumtechnieken of volgens de instructies van de afnameset.

6.4 Test

- Standaard voorzorgsmaatregelen om contaminatie van PCR-reacties te voorkomen zijn onder meer het gebruik van steriele filterpipetpunten; het gebruik van een nieuwe pipetpunt voor elke pipetteerhandeling; en scheiding van de werkstromen.
- PCR-testen zijn gevoelig voor contaminatie door eerdere PCR-producten. Open nooit reageerbuizen nadat de PCR voltooid is.

6.5 Veiligheidsmaatregelen

 Veiligheidsinformatiebladen (VIB's) zijn op aanvraag beschikbaar. Neem contact op met tech@speedx.com.au voor meer informatie.

6.6 Assay plugin waarschuwingen en voorzorgsmaatregelen

- SpeeDx-software kan alleen de analyse aansturen van ruwe gegevens die door de testkit worden gegenereerd wanneer deze met het bijbehorende PCR-instrument wordt gebruikt. De bereiding van monsters, de reacties, de programmering van de apparatuur of de uitvoering van de behandeling worden niet hierdoor geregeld.
- Gebruikers moeten goed getraind zijn in het gebruik van de analysesoftware en de toegang moet worden beperkt tot elke toegewezen individuele gebruiker

- Er wordt aanbevolen om controlemechanismen te implementeren voor gebruikersverificatie en cyberveiligheid, zoals antivirussoftware of het gebruik van een firewall binnen het IT-systeem en de door de software gebruikte infrastructuur
- Wanneer een cyberbeveiligingsincident wordt ontdekt, zoals ongeoorloofde toegang en ransomware-aanvallen, moet u contact opnemen met tech@speedx.com.au voor verdere ondersteuning.

Benodigde materialen (niet meegeleverd)

Positief controlemonster

- REDx™ FLOQ SARS-CoV-2 positieve controle uitstrijkje (Microbix, Cat. nr. RED-S-19-01)

Algemene verbruiksartikelen voor lab

- Handschoenen en schone laboratoriumjassen
- Vortexmixer
- Tafelcentrifuge voor buisjes van 0,5 mL en 1,5 mL
- Micropipetten
- Multikanaalspipetten
- Steriele aerosolbestendige pipetpunten
- Buisjes van 0,5 mL en 1,5 mL (PCR-kwaliteit)
- Zelfklevende plaatafdichting
- Buisjes van 2,0 mL (voor voorverdunning van de interne-controlecellen)

Voor MagNA Pure 96 Instrument

- 1x Phosphate Buffered Saline (PBS 1x met fosfaat gebufferde zoutoplossing)
- MagNA Pure 96 Internal Control Tube (buisje voor interne controle) (Roche, catalogusnr. 00374905001)
- MagNA Pure 96 DNA en Viral NA Small Volume Kit (Roche, catalogusnr. 06543588001)
- MagNA Pure 96 System Fluid (external) (vloeistof voor externe controle) (Roche, catalogusnr. 06640729001)
- MagNA Pure 96 Processing Cartridge (verwerkingspatroon) (Roche, catalogusnr. 06241603001)
- MagNA Pure 96 Pure tip 1000uL (Zuivere tip 1000uL) (Roche, catalogusnr. 6241620001)
- MagNA Pure 96 Resultatenplaat (Roche, catalogusnr. 06241611001)
- MagNA Pure Sealing Foil (Zuivere afdichtfolie) (Roche, Catalogusnr. 06241638001)

Voor MGISP-960-instrument

- Nucleïnezuurextractiekit 96 prep (MGI, Cat. Nr. 1000022201(ARTG-IVD)) of Nucleïnezuurextractiekit 96 prep (MGI, Cat. Nr.1000021042 (CE-IVD))
- 4 x 250 µL automatische filtertips (MGI, Cat Nr. 1000000723)
- 5 x 1.3 mL deep-well plaat met u-vormige onderkant (MGI, Cat. Nr. 1000004644)
- 1 x omrande 96-well PCR-plaat met harde shell en dunne wand, witte shell/doorzichtige well (MGI, Cat. Nr. 1000012059)
- 50 mL-buis, DNase-vrij, RNase-vrij
- Absoluut ethanol (100%)
- Plaatcentrifuge

Voor het PurePrep 96-instrument

- 1x Phosphate Buffered Saline (PBS) (met fosfaat gebufferde zoutoplossing [PBS])
- Water voor moleculaire toepassingen
- PurePrep diepe wells-plaat 2 mL (Molgen catalogusnr. MG96020050)
- PurePrep 96-elutieplaat 200 ul (Molgen catalogusnr. MG96010050)
- PurePrep 96-tipcombs (Molgen catalogusnr. MG96030050)
- Molgen PurePrep pathogenen 1x96-kit (Molgen catalogusnr. OE00290096) OF 10x96-kit (Molgen catalogusnr. OE00290960)

- Microtiterplaat-schudder (minimale snelheid 1000 RPM)
- 50 mL-reagensreservoirs voor 8-kanaalspipetten
- 50 mL Falcon-buizen

Voor de KingFisher Flex

- 1x Phosphate Buffered Saline (PBS 1x met fosfaat gebufferde zoutoplossing)
- Thermofisher MagMAX viraal en pathogeen nucleïnezuurisolatie-kit (Thermofisher catalogusnr. A42352)
- KingFisher 96 diepe wells-plaat, v-bodem, polypropyleen (Thermofisher catalogusnr. 95040450)
- KingFisher 96-tipcombs voor diepe wells-magneten (Thermofisher catalogusnr. 97002534)
- KingFisher 96-microtiterplaat (200 μL) (Thermofisher catalogusnr. 97002540)
- 80% ethanol
- 50 mL-reagensreservoirs voor 8-kanaalspipetten
- 50 mL Falcon-buizen

Voor SpeeDx **Plex**Prep[™] instrument voor vloeistofbehandeling

- PlexPrep™ dek met 8 posities uitgerust met 2 onafhankelijke kanalen en een 8-sondekop (onderdeel nr. 6600200-01)
- 4x tiprekmodules met frame (catalogusnr. HMT-6600533-01)
- 4x buisjesmodule met 24 posities (catalogusnr. HMT-6600555-01)
- 1x module voor kleine buisjes met 24 posities (catalogusnr. HMT6600409-01)
- 50ul geleidende filtertips (catalogusnr. HMT-235948)
- 300ul geleidende filtertips (catalogusnr. HMT-235903)
- 1000 ul geleidende filtertips (catalogusnr. HMT-235905)

Voor LightCycler[®] 480 Instrument II

- PlexPCR[®] Colour Compensation (CC) kit (kleurcompensatiekit) (SpeeDx, catalogusnr. 90001)
- LightCycler[®] 480 Multiwell Plate 96 (96-wells plaat) (Roche, catalogusnr. 04729692001)
- LightCycler[®] 480 Multiwell Plate 384 (384-wells plaat) (Roche, catalogusnr. 04729749001)
- LightCycler[®] 480 Sealing Foil (afdichtfolie) (Roche, catalogusnr. 04729757001)

Voor CFX96[™] Dx realtime PCR-detectiesysteem en CFX96 Touch [™] realtime PCR-detectiesystemen

- Hard-Shell[®] 96-Well PCR Plates (96-wells-platen), laag profiel, half omrand, doorzichtig shell/doorzichtig wells (Bio-Rad, catalogusnr. HSL9901 or HSL9601)
- Microseal[®] 'B' PCR Plate Sealing Film (afdichtfilm), zelfklevend, optisch (Bio-Rad, catalogusnr. MSB1001)

8 Principe van de technologie

Realtime-PCR (qPCR) kan worden gebruikt voor de amplificatie en detectie van specifieke doel-nucleïnezuren van pathogenen. PlexPCR® is een gPCR-technologie waarbij gebruik wordt gemaakt van PlexZyme®-enzymen die het geamplificeerde product detecteren en melden door het genereren van een fluorescentiesignaal (Afbeelding 1).

PlexZyme® enzymen zijn katalytische DNA-complexen die bestaan uit twee DNA-oligo's die 'partiële enzymen' worden genoemd. Elk partieel enzym heeft een doelspecifiek gebied, een katalytische kern en een gebied dat aan een universele probe bindt. Als het doelproduct aanwezig is, binden de twee partiële enzymen naast elkaar en vormen zo het actieve PlexZyme® dat de katalytische activiteit bezit om een gelabelde sonde te splitsen. Door deze splitsing worden de fluorofoor- en guencherkleurstof van elkaar gescheiden, waardoor een fluorescentiesignaal wordt geproduceerd dat realtime kan worden gevolgd. PlexZyme®-enzymen hebben in vergelijking met andere detectietechnologieën extra specificiteit, omdat er binding van twee partiële enzymen nodig is voor detectie. Bovendien zijn PlexZyme®-enzymen 'multiple-turnover'-enzymen, zodat in elke PCR-cyclus meerdere sondes kunnen worden gesplitst, wat tot een sterk en gevoelig signaal leidt. PlexZyme®-assays zijn zeer gevoelig en specifiek en uitermate geschikt voor multiplexdetectie van pathogenen.

Afbeelding 1. Schematische voorstelling van PlexZyme®-detectie en universele signalering

Target

9 Overzicht procedure

10 Gedetailleerde procedure

NB: Geleverde reagentia zijn cursief weergegeven, met daarachter tussen haakjes de kleur van de deksel van het buisje.

10.1 Monsterafname, transport en opslag

Het niet correct verzamelen, opslaan en transporten van monsters zal waarschijnlijk resulteren in onjuiste testresultaten. Een goede training in het verzamelen van monsters wordt sterk aangeraden, om de kwaliteit en stabiliteit van de monsters te garanderen.

Raadpleeg de gebruikersinstructies van de producent voor het correct verzamelen van monsters.

Voorafgaand aan het gebruik van elke verzamelmethode dienen getrainde medewerkers het hulpmiddel voor monsterverzameling en de methodologie goed te begrijpen. Raadpleeg ten minste de testbeschrijving voor het volgende: aanduiding van het monstertype, voldoende volume, procedure(s), benodigde verzamelmaterialen, voorbereiding patiënt, en het juist hanteren en bewaren van monsters.

Nasofaryngeale uitstrijkjes moeten volgens de instructies van de verzamelkit worden verzameld en vervoerd. Het wordt aanbevolen om de monsters van nasofaryngeale uitstrijkjes onmiddellijk na ontvangst te testen of op te slaan bij een temperatuur tussen -25 °C en -15 °C en het aantal invries-ontdooicycli tijdens gebruik tot 3 te beperken.

10.2 Monsterverwerking

De *PlexPCR[®]* SARS-CoV-2-kit is gevalideerd op de extractie-instrumenten die worden vermeld in Tabel 2.

Zie paragraaf 10.3 voor instructies over het gebruik van de Internal Control (interne controle).

Zie paragraaf 15 voor instructies over het gebruik van de REDx[™] FLOQ SARS-CoV-2 Swab Positive Control-kit (positieve controle uitstrijkje).

Tabel 2. Gevalideerde extractieprotocollen				
Instrument	Extractiekit	Monstervolume	Protocol	Elutievolume
MagNA Pure 96 ^{a b}	MagNA Pure 96 DNA en Viral NA Small Volume Kit	200 µL	Pathogen Universal 200	50 µL
MGISP-960 ^{a b}	Nucleïnezuurextractiekit	180 µL	MGISP-960 Geautomatiseerde Extractie Standaard Workflow	30 µL
KingFisher Flex ^{a b}	MagMAX viraal/pathogeen nucleïnezuurisolatie-kit	200 µL	MVP_Flex_200ul	50 µL
PurePrep 96 ^{a b}	PurePrep pathogenen-kit	200 µL	PP v.3	50 µL

^a Zie **10.3.1** voor instructies voor het gebruik van de internal control (interne controle) op de MagNA Pure 96, KingFisher Flex en PurePrep 96 ^bMonsters moeten binnen 30 minuten na extractie aan de mastermix worden toegevoegd

10.2.1 Reagensvolumes voor de MGISP-960

Tabel 3. MGISP-960 reagensvolumes per sample			
Reagens	Volume per monster	Plaat	
Buffer MLB	160µL	Deep-well plaat met u-vormige bodem (voorbereid buffermengsel)	
Absoluut ethanol*	200µL	Deep-well plaat met u-vormige bodem (voorbereid buffermengsel)	
Magnetische kralen M	15µL	Deep-well plaat met u-vormige bodem (voorbereid buffermengsel)	
Bufferversterker	1µL	Deep-well plaat met u-vormige bodem (voorbereid buffermengsel)	
RNase-vrij water	15µL	Deep-well plaat met u-vormige bodem (voorbereid buffermengsel)	
RNase-vrij water	50µL	Deep-well plaat met u-vormige bodem	
Buffer MW1	170µL	Deep-well plaat met u-vormige bodem	
Buffer MW2	340µL	Deep-well plaat met u-vormige bodem	

* Niet meegeleverd

10.2.2 <u>Reagensvolumes voor de KingFisher Prep en de PurePrep</u>

Tabel 4. KingFisher reagensvolumes			
Reagens	Volume per monster	Plaat	
MagMax bindende oplossing	265 µL	KingFisher 96 diepe wells-plaat (monsterplaat)	
MagMax Total nucleïnezuurbindende korrels	10 µL	KingFisher 96 diepe wells-plaat (monsterplaat)	
MagMax Proteinase K	5 µL	KingFisher 96 diepe wells-plaat (monsterplaat)	
MagMax wasbuffer	500 µL	KingFisher 96 diepe wells-plaat	
Spoeling 2* (80% ethanol)	500 µL	KingFisher 96 diepe wells-plaat	
Spoeling 3* (80% ethanol)	250 μL	KingFisher 96 diepe wells-plaat	
MagMax elutie-oplossing	50 uL	KingFisher 96-microtiterplaat 200 µL	

* niet bijgeleverd

Tabel 5. PurePrep 96 reagensvolumes			
Reagens	Volume per monster	Plaat	
Molgen Lysis-buffer PA1	200 µL	PurePrep diepe wells-plaat 2 mL (monsterplaat)	
Molgen Poly-A-RNA 2,5 mg/mL-oplossing	1 µL	PurePrep diepe wells-plaat 2 mL (monsterplaat)	
Molgen Proteinase K 20 mg/mL-oplossing	10 µL	PurePrep diepe wells-plaat 2 mL (monsterplaat)	
Molgen MagSi-PA VII (magnetische korrels)	20 µL	PurePrep diepe wells-plaat 2 mL (monsterplaat)	
Molgen bindende buffer U1	400 µL	PurePrep diepe wells-plaat 2 mL (monsterplaat)	
Molgen wasbuffer I	800 µL	PurePrep diepe wells-plaat 2 mL	
Molgen wasbuffer I	800 µL	PurePrep diepe wells-plaat 2 mL	
Molgen wasbuffer II	800 µL	PurePrep diepe wells-plaat 2 mL	
Molgen elutiebuffer	50 µL	PurePrep 96-elutieplaat 200 ul	

10.3 Internal Control (IC) (interne controle [IC])

De kit bevat een interne controle om de extractie-efficiëntie en qPCR-remming te bepalen. De internal control assay (interne controleassay) wordt meegeleverd met de assay-mix en versterkt de *Internal Control RNA* (interne controle-RNA) (PAARS). De *Internal Control RNA* (interne controle-RNA) wordt verdund en verwerkt zoals hieronder beschreven voor specifieke extractie-instrumenten. De matrijs voor internal control (interne controle) wordt dus met het monster meegeëxtraheerd en in de reactie meegeamplificeerd.

10.3.1 Internal Control (interne controle) op de MagNA Pure 96, KingFisher Flex en PurePrep 96

Verdun de *Internal Control RNA* (interne controle-RNA) (PAARS) 1 op 100 in 1x PBS (**Tabel 6**). Pas het volume zo nodig aan en houd daarbij dezelfde verdunningsfactor aan (zie de handleiding van de extractiekit voor het minimale volume voor het vereiste aantal monsters). De verdunde interne controlecellen worden in het Internal Control RNA (interne controle-RNA) in de MagNA Pure 96 geladen en er wordt automatisch 20 µL aan elk monster toegevoegd (standaard). Voor extracties op de PurePrep 96 en KingFisher moet 20 ul van het verdunde internal control RNA (interne controle RNA) handmatig aan de monsterplaat worden toegevoegd.

NB: Verdunde Internal Control RNA (interne controle-RNA) NIET bewaren

Tabel 6. Verdunning van Internal Control cells (interne controlecellen) voor MagNA Pure 96(verdunning 1:100)			
Internal Control RNA (interne controle-RNA) (PAARS) (μL)	1x PBS (μL)	Totaal volume (μL)	Volume toegevoegd aan monster (µL)
36	3564	3600	20

10.4 Voorbereiding van realtime PCR

NB: Alvorens de reagentia te gebruiken, dient u deze volledig te ontdooien en gedurende korte tijd goed te mengen in de vortexmixer.

De *PlexPCR*[®] SARS-CoV-2-kit is getest op een eindreactievolume van 10 µL in platen met 96 of 384 wells op de LC480 II; op een eindreactievolume van 10 µL in platen met 96 wells op de CFX96 Dx en CFX96 Touch. De *PlexPCR*[®] SARS-CoV-2-kit heeft een geschikt dood volume voor gebruik met systemen voor vloeistofbehandeling en is gevalideerd met de SpeeDx *PlexPrep*[™]. Neem voor hulp met protocollen contact op via tech@speedx.com.au.

Raadpleeg Tabel 1 - voor een beschrijving van de inhoud van de kit.

10.4.1 <u>Voorbereiding mastermix</u>

- Voor een reactievolume van 10 µL is 7,5 µL mastermix en 2,5 µL extract nodig. Bereid de mastermix zoals aangegeven in Tabel 7. Pipetteer de mastermix in de PCR-plaat en voeg vervolgens geëxtraheerd monster aan de reactie toe.
- Op elke plaat moeten positieve en negatieve controles worden uitgevoerd.
- Dicht de plaat af, centrifugeer en breng over naar de thermocycler.

Tabel 7. Mastermix				
Reagens	Concentratie	Volume per 10 µL reactie (µL)		
Nuclease Free Water (nucleasevrij water) (BLAUW)	n.v.t.	1,7		
Plex Mastermix (GROEN)	2x	5,0		
SARS-CoV-2-mix (BRUIN)	20x	0,5		
RTase (NEUTRAAL)	100x	0,1		
RNase-remmer (BLACK)	50x	0,2		
Totaal volume (µL)	7,5			
Voeg 2,5 μL monster toe zodat het eindvolume op 10 μL komt				

11 Programmering en analyse

Details voor programmering en analyse zijn beschreven in paragraaf 19-21.

De *PlexPCR*[®] SARS-CoV-2-kit gebruikt 3 kanalen voor detectie van SARS-CoV-2 via detectie van de genen ORF1ab (Open Reading Frame [open leesframe]) en RdRp (RNA-dependent RNA polymerase [RNA-afhankelijk RNA-polymerase]) en Internal Control (interne controle) (**Tabel 8**).

Tabel 8. Kanalen voor PlexPCR [®] SARS-CoV-2-targets				
qPCR-instrument	ORF1ab	RdRp-gen	Internal Control (interne controle)	
LC480 II	465-510	533-580	533-610	
CFX96 Dx en CFX96 Touch	FAM	HEX	Texas Red	

12 Interpretatie van de resultaten

Gegevensinterpretatie kan worden uitgevoerd met behulp van de ingebouwde LC480 II-software, de ingebouwde CFX96[™] Dx- en CFX96[™] Touch-software of de *PlexPCR*[®] SARS-CoV-2-analysesoftware. De *PlexPCR*[®] SARS-CoV-2-analysesoftware automatiseert de gegevensinterpretatie van de amplificatieresultaten en stroomlijnt de workflow. Instructies voor het gebruik van de analysesoftware vindt u in **paragraaf 21**.

Zie **Tabel 9** voor de juiste analysesoftware voor elk instrument voor realtime PCR. De analysesoftware is op aanvraag leverbaar. Neem voor meer informatie contact op via <u>tech@speedx.com.au</u>.

Tabel 9. <i>PlexPCR[®]</i> SARS-CoV-2-analysesoftware		
Catalogusnr.	Analysesoftware*	Instrument voor realtime PCR
99021	PlexPCR [®] SARS-CoV-2 (LC480)	LC480 II
99022	PlexPCR [®] SARS-CoV-2 (CFX)	CFX96 Dx en CFX96 Touch

* Raadpleeg de website https://plexpcr.com/products/respiratory-infections/plexpcr-sars-cov-2/ om na te gaan of u de nieuwste versie van de analysesoftware gebruikt.

13 Beperkingen

- De *PlexPCR*[®] SARS-CoV-2-assay dient uitsluitend te worden uitgevoerd door personeel dat opgeleid is voor de procedure en deze moet worden uitgevoerd overeenkomstig de gebruiksaanwijzing.
- Betrouwbare resultaten zijn afhankelijk van afdoende verzameling, vervoer, opslag en verwerking van de specimen. Het niet volgen van de juiste procedures in een van deze stappen kan tot onjuiste resultaten leiden.
- De *PlexPCR*[®] SARS-CoV-2-assay is een kwalitatieve assay en levert GEEN kwantitatieve waarden of informatie over de hoeveelheid organismen.
- Resultaten van de test moeten gecorreleerd worden met de klinische geschiedenis, epidemiologische gegevens, laboratoriumgegevens en alle andere gegevens waarover de arts beschikt.
- De prevalentie van virale targets zal de positieve en negatieve voorspellende waarden voor de assay beïnvloeden.
- Negatieve resultaten sluiten de mogelijkheid van infectie als gevolg van de onjuiste verzameling van monsters, technische fouten, de aanwezigheid van inhibitoren, dooreenhalen van specimens, of kleine aantallen organismen in het klinische specimen niet uit.
- Onjuiste positieve resultaten kunnen optreden als gevolg van kruisbesmetting door doelorganismen, hun nucleïnezuren of een versterkt product.

Klinische monsters met een Cq-waarde < 3 geven mogelijk geen geldig resultaat. Deze monsters worden door de *PlexPCR*[®] SARS-CoV-2-analysesoftware gemarkeerd met het volgende bericht: "Error: Abnormal change in fluorescence level" (Fout: abnormale wijziging in het fluorescentieniveau). Dit wijst op een SARS-CoV-2-monster met een hoge virale load boven de detectielimiet. Dergelijke monsters moeten worden verdund en opnieuw worden uitgevoerd.

Deze monsters worden ook bij analyse met de ingebouwde LC480 II-software gemarkeerd met het volgende bericht: "Some samples exceed the noiseband value in the background calculation region" (Sommige monsters overschrijden de geluidsbandwaarde in het achtergrondberekeningsgebied). Dit wijst op een SARS-CoV-2-monster met een hoge virale load boven de detectielimiet. Dergelijke monsters moeten worden verdund en opnieuw worden uitgevoerd.

Klinische monsters kunnen ongeldig lijken als ze een hoge virale load hebben. Dit wordt niet gesignaleerd door de ingebouwde CFXsoftware, en daarom moet de gebruiker alle curven controleren alvorens verder te gaan. Wanneer een SARS-CoV-2-monster met hoge load de detectielimiet overschrijdt, moeten de monsters worden verdund en opnieuw worden uitgevoerd.

14 Kwaliteitscontrole

De *PlexPCR*[®] SARS-CoV-2-kit bevat een internal control (interne controle) om de extractie-efficiëntie en qPCR-remming te bepalen (paragraaf 10.3).

De REDx[™] FLOQ SARS-CoV-2 Swab Positive Control (positieve controle uitstrijkje) (Microbix, catalogusnr. RED-S-19-01) wordt aangeraden als positief controlemateriaal voor nucleïnezuuramplificatie. Zie **paragraaf 15** voor instructies over het gebruik van de REDx[™] FLOQ SARS-CoV-2 Swab Positive Control (positieve controle uitstrijkje). Aanbevolen wordt om een bekend negatief specimen als negatieve controle te gebruiken.

15 Instructies voor de REDx™ FLOQ SARS-CoV-2 Positive Control (positieve controle)

De REDx™ FLOQ SARS-CoV-2 Swab Positive Control (positieve controle uitstrijkje) (Microbix, catalogusnr. RED-S-19-01) bevat positief controlemateriaal voor SARS-CoV-2.

De REDx[™] SARS-CoV-2 Positive Controls (positieve controles) moeten bij 2-8 °C worden opgeslagen tot aan gebruik. Eenmaal geopend kan de REDx[™] SARS-CoV-2 Positive Control (positieve controle) niet nog eens worden gebruikt.

Zie de bijsluiter van de REDx™ SARS-CoV-2 Positive Control (positieve controle) voor meer informatie over opslag en beperkingen.

15.1 Gebruiksaanwijzing

Verdun de REDx[™] SARS-CoV-2 Positive Control (positieve controle) in 3 mL universeel transportmedium (UTM) of viraal transportmedium (VTM).

Bereid qPCR-reacties voor zoals beschreven in paragraaf 10.4 met positief controlemateriaal als monster.

16 Prestatiekenmerken

16.1 Klinische prestaties

16.1.1 Klinisch onderzoek 1

Een retrospectief klinisch onderzoek werd uitgevoerd in het Queensland Paediatric Infectious Diseases Laboratory (QPID), South Brisbane, QLD, Australië, op gearchiveerde monsters van nasofaryngeale uitstrijkjes (n=165) die eerder zijn getest met de Abbott m2000 SARS-CoV-2-assay. Monsters werden geëxtraheerd op het extractieplatform van de MagNA Pure 96 (Roche) met het Pathogen Universal 200-protocol. Er werd 200 µL aan monsters geëxtraheerd en deze werden geëlueerd in 50 µl. Monsters werden getest met de PlexPCR[®] SARS-CoV-2-kit in 10 µL reacties op de LightCycler 480 II.

Er werd gebruikt gemaakt van een samengesteld referentieresultaat als referentiemethode voor de *PlexPCR*[®] SARS-CoV-2-assay. De resultaten van twee gevalideerde SARS-CoV-2 PCR-assays (Abbott m2000 SARS-CoV-2-assay en Real-time fluorescent RT-PCR-kit voor de detectie van SARS-CoV-2 (BGI)) werden geanalyseerd. Monsters waarvoor in beide assays overeenstemmende resultaten werden gegenereerd, werden positief of negatief bevonden voor SARS-CoV-2. De SARS-CoV-2-status van monsters waarvoor geen overeenstemmend resultaat werd gegenereerd tussen de twee vergelijkende assays (n=22) kon niet met zekerheid worden vastgesteld en deze monsters werden uitgesloten van de uiteindelijke analyse. Positieve en negatieve overeenkomstpercentages tussen de *PlexPCR*[®] SARS-CoV-2 en de samengestelde referentie worden weergegeven in **Tabel 10**.

Tabel 10. Klinische evaluatie van de <i>PlexPCR[®]</i> SARS-CoV-2-kit							
		Resultaat samengestelde referentie (n = 142)					
		SARS	-CoV-2				
		Positief	Negatief				
PlayPCB [®] SARS-CoV-21	Positief	83	2				
FIEXFOR SARS-000-2	Negatief	6	51				
Positief overeenkomstpercenta	ige (PPA)	93,26%					
		(0070 01 00;	220/				
Negatief overeenkomstpercent	age (NPA)	96,23% (95% CI 87,02 – 99,54%)					
Algehele overeenkomstgraad	I (ORA)	94,37%					
5	. ,	(95% Cl 89,20 – 97,54%)					

¹Eén monster was herhaaldelijk ongeldig in de *PlexPCR[®]* SARS-CoV-2-assay en kon niet worden beoordeeld.

16.2 Analytische prestaties

16.2.1 Herhaalbaarheid en reproduceerbaarheid

16.2.1.1 LightCycler[®] 480 Instrument II

Een onderzoek naar reproduceerbaarheid is uitgevoerd over partijen, operators, dagen en LightCycler[®] 480 II instrumenten voor de *PlexPCR*[®] SARS-CoV-2-assay, met panelen geprepareerd in gebundelde negatieve klinische nasofaryngeale uitstrijkjes verzameld in een viraal transportmedium (VTM). Paneelleden bestonden uit het referentiemateriaal SARS-CoV-2-stam USA-WA1/2020 (ZeptoMetrix, NATtrol[™] SARS-CoV-2 Stock, catalogusnr. NATSARS(COV2)-ST) verrijkt in negatieve nasofaryngeale uitstrijkjes verzameld in VTM bij 5x LOD, 50x LOD en 100x LOD. Elk paneel bevatte zes replicaten van deze paneelleden.

De tests werden uitgevoerd met twee verschillende partijen *PlexPCR*[®] SARS-CoV-2-mix. Panelen werden tweemaal per dag getest over drie niet-opeenvolgende dagen door twee operators, wat een totaal opleverde van 36 waarnemingen per paneellid (6 replicaten x 2 runs x 3 dagen x 1 locatie = 36 waarnemingen).

De herhaalbaarheid en reproduceerbaarheid tussen partijen, dagen, instrumenten en operators werd beoordeeld. Voor elk paneellid werd het overeenkomstpercentage berekend, gebaseerd op het verwachte resultaat in het SARS-CoV-2-detectiecomponent van de assay. Het variatiecoëfficiëntpercentage (%CV) werd berekend op basis van de cycluskwantificeringswaarde (C_q) die werd gerapporteerd voor SARS-CoV-2-detectie. De resultaten van de testen voor herhaalbaarheid en reproduceerbaarheid worden getoond in **Tabel 11**.

Tabel 11. Herhaalbaarheid/reproduceerbaarheid van het SARS-CoV-2-detectiecomponent van de *PlexPCR*[®] SARS-CoV-2-assay op het LightCycler[®] 480 Instrument II

				SARS-	-CoV-2 – ORF	1ab				
			Binner	n de run	Tusse	Tussen runs		Tussen partijen		taal
Paneellid	N	Gemiddel de C _q	SD	%CV	SD	%CV	SD	%CV	SD	%CV
100x LOD	36	18,6	0,52	2,8	0,31	1,7	0,51	2,7	0,5	2,7
50x LOD	36	19,4	0,53	2,7	0,28	1,5	0,58	3	0,52	2,7
5x LOD	36	22,6	0,91	4	0,53	2,3	0,84	3,7	0,98	4,3
				SARS	S-CoV-2 – Rdl	Rp				
			Binnen de run		Tussen runs		Tussen partijen		Totaal	
Monster-ID	N	Gemiddel de C _q	SD	%CV	SD	%CV	SD	%CV	SD	%CV
100x LOD	36	19,1	0,4	2,1	0,24	1,3	0,31	1,6	0,36	1,9
50x LOD	36	19,9	0,41	2,1	0,19	1	0,36	1,8	0,36	1,8
5x LOD	36	23,2	0,51	2,2	0,31	1,3	0,39	1,7	0,57	2,5
				Internal Cor	ntrol (interne	controle)				
			Binner	n de run	Tusse	en runs	Tussen	partijen	То	taal
Monster-ID	N	Gemiddel de C _q	SD	%CV	SD	%CV	SD	%CV	SD	%CV
100x LOD	36	19,3	0,36	1,9	0,45	2,3	0,3	1,6	0,51	2,6
50x LOD	36	19,5	0,42	2,2	0,41	2,1	0,4	1,8	0,52	2,7
5x LOD	36	19,5	0,67	3,4	0,54	2,7	0,5	2,2	0,69	3,4
Negatief	36	20.4	0.35	1.7	0.93	4.6	0.2	0.8	0.89	4.4

16.2.1.2 CFX96[™] Dx realtime PCR-detectie en CFX96 Touch[™] realtime PCR-detectiesystemen

Een onderzoek naar herhaalbaarheid en reproduceerbaarheid is uitgevoerd over partijen, operators, dagen en runs op de CFX96[™] Touch realtime PCR-detectiesystemen voor de *PlexPCR*[®] SARS-CoV-2-assay, met panelen geprepareerd in gebundelde negatieve klinische nasofaryngeale uitstrijkjes verzameld in een viraal transportmedium (VTM). Paneelleden bestonden uit het referentiemateriaal SARS-CoV-2-stam USA-WA1/2020 (ZeptoMetrix, NATtrol[™] SARS-CoV-2 Stock, catalogusnr. NATSARS(COV2)-ST) verrijkt in negatieve nasofaryngeale uitstrijkjes verzameld in VTM bij 5x LOD, 50x LOD en 100x LOD. Elk paneel bevatte zes replicaten van deze paneelleden.

De tests werden uitgevoerd met twee verschillende partijen **Plex**PCR[®] SARS-CoV-2-mix. Panelen werden driemaal per dag getest over drie niet-opeenvolgende dagen door twee operators, wat een totaal opleverde van 108 waarnemingen per paneellid.

De reproduceerbaarheid binnen de runs, tussen runs, tussen partijen, tussen operators, tussen instrumenten en de algehele reproduceerbaarheid werd beoordeeld. Voor elk paneellid werd het overeenkomstpercentage berekend, gebaseerd op het verwachte resultaat in het SARS-CoV-2-detectiecomponent van de assay. Het variatiecoëfficiëntpercentage (%CV) werd berekend op basis van de cycluskwantificeringswaarde (C_q) die werd gerapporteerd voor SARS-CoV-2-detectie. De resultaten van de testen voor herhaalbaarheid en reproduceerbaarheid worden getoond in **Tabel 12**.

	het CFX96 Touch [™] realtime PCR-detectiesysteem														
	SARS-CoV-2 – ORF1ab														
			Binnen	de run	Tusse	n runs	Tus par	Tussen partijen		Tussen operators		Tussen instrumenten		Totaal	
Paneellid	N	Gemidde Ide C _q	SD	%CV	SD	%CV	SD	%CV	SD	%CV	SD	%СV	SD	%CV	
100x LOD	108	19,18	0,27	1,5	0,41	2,2	0,65	3,4	0,85	4,4	0,17	0,9	1,14	5,9	
50x LOD	108	20,20	0,05	0,2	0,42	2,1	0,67	3,3	0,82	4,0	0,13	0,6	1,18	5,9	
5x LOD	108	22,78	0,37	1,7	0,45	2,0	0,41	1,8	0,72	3,2	0,28	1,2	1,19	5,2	
SARS-CoV-2 – RdRp															
			Binnen	de run	Tussen runs		Tussen partijen		Tussen operators		Tussen instrumenten		Totaal		
Monster-ID	N	Gemidde Ide C _q	SD	%CV	SD	%CV	SD	%CV	SD	%CV	SD	%CV	SD	%CV	
100x LOD	108	19,80	0,12	0,6	0,35	1,8	0,63	3,2	0,85	4,3	0,16	0,8	1,15	5,8	
50x LOD	108	20,73	0,22	1,1	0,22	1,1	0,67	3,2	0,85	4,1	0,18	0,9	1,23	5,9	
5x LOD	108	23,18	0,39	1,7	0,24	1,0	0,53	2,3	0,61	2,6	0,07	0,3	1,09	4,7	
					Internal	Control (i	interne co	ontrole)							
			Binnen	de run	Tusse	n runs	Tussen partijen		Tus oper	sen ators	Tussen instrumenten		To	taal	
Monster-ID	N	Gemidde Ide C _q	SD	%CV	SD	%CV	SD	%CV	SD	%CV	SD	%СV	SD	%CV	
100x LOD	108	20,34	0,24	1,2	0,51	2,5	0,28	1,4	0,23	1,1	0,06	0,3	0,79	3,9	
50x LOD	108	20,75	0,29	1,4	0,75	3,6	0,20	0,9	0,18	0,9	0,01	0,0	0,74	3,6	
5x LOD	108	20,98	0,26	1,2	0,76	3,6	0,11	0,5	0,12	0,6	0,05	0,2	0,69	3,3	
Negatief	108	21,32	0,22	1,0	0,80	3,7	0,10	0,4	0,14	0,6	0,04	0,2	1,01	4,8	

16.2.2 Analytische gevoeligheid

16.2.2.1 LightCycler® 480 Instrument II

SARS-CoV-2-stam USA-WA1/2020 (ZeptoMetrix, NATtrol[™] SARS-CoV-2 Stock, catalogusnr. NATSARS(COV2)-ST) werd gebruikt als de representatieve stam voor het beoordelen van de detectielimiet (LoD [limit-of-detection]) van de **Plex**PCR[®] SARS-CoV-2-assay op het LightCycler[®] 480 Instrument II. Gekwantificeerde preparaten met positief referentiemateriaal van SARS-CoV-2 werden serieel verdund in negatieve nasofaryngeale uitstrijkjes in VTM. In totaal werden er 7 concentratieniveaus getest op meerdere dagen met gebruik van 2 onafhankelijke partijen van **Plex**PCR[®] SARS-CoV-2-assay-reagentia voor een totaal van 40 replicaten per concentratie. De LoD werd door middel van de logistische regressie-analyse (Probit-model) bepaald als de laagste concentratie (uitgedrukt in exemplaren/mL) waarmee een minimum van ≥ 95% positieve replicaten werd gegenereerd.

De LoD-waarde (vastgesteld uit de gegevens weergegeven in Tabel 13) was 764 exemplaren/mL (95% CI: 565,69 - 1193,50 exemplaren/mL).

Tabel 13. LoD van de <i>PlexPCR[®]</i> SARS-CoV-2-assay [♦]								
Positief		SARS-CoV-2	PlexPCR [®] SARS-CoV-2-resultaat					
referentiemateri aal	Stam	concn. (genomen per mL)	Positief	Totaal	% positief			
		2500	40	40	100.00			
		1875	40	40	100.00			
		1250	40	40	100.00			
SARS-CoV-2	USA-WA1/2020	625	36	40	90,00			
		313	27	38*	71,05			
		156	22	40	55,00			
		78	10	40	25,00			

* Er werd vergelijkbare analytische gevoeligheid behaald met de CFX96-systemen

* Voor de concentratie van 312,5 exemplaren/mL werden 2 replicaten als ongeldig gerapporteerd door de analysesoftware als gevolg van IC-falen. Deze werden uitgesloten van de analyse.

16.2.2.2 Workflow met de MGISP-960 & LightCycler® 480 Instrument II

Er is onderzoek gedaan door het Queensland Pediatric Infectious Diseases Laboratory (QPID), South Brisbane, QLD, om aan te tonen dat de analytische prestaties van de *PlexPCR*[®] SARS-CoV-2-assay wanneer samples worden geëxtraheerd met behulp van het MGISP-960-instrument (MGI) met de MGIEasy Nucleïnezuurextractiekit (PID: 1000020471; MGI), gelijk is aan de analytische onderzoeksprestaties wanneer samples worden geëxtraheerd met het MagNa Pure 96 (MP96)-instrument (Roche) met de MagNA Pure 96 DNA en Viral NA Small Volume Kit (PID: 06543588001; Roche). Negatief referentiemateriaal bestond uit gepoolde negatieve neus- en keel (NP)-uitstrijkjes in virale transportmedia (VTM) verzameld van SARS-CoV-2-negatieve personen (FDA Emergency Use Authorization COVID-19 Molecular Diagnostic Template for Commercial Manufacturers). Positief referentiemateriaal bestond uit SARS-CoV-2-stam USA-WA1/2020 (ZeptoMetrix, NATtrol™ SARS-CoV-2 Stock, Cat nr. NATSARS(COV2)-ST), verrijkt met een negatieve matrix op 2x LOD.

Voor iedere geteste MGIEasy nucleïdezuurextractiekit werd het percentage correct geïdentificeerde samples uitgerekend. De resultaten zijn samengevat in **Tabel 14.** De gemiddelde Cq-waarde, standaarddeviatie en variatiecoëfficiënt (%) van elk doel (ORF1ab, RdRp en IC) voor elke extractiekit wordt beschreven in **Tabel 15.** De IC was geldig voor alle samples. Het succespercentage voor elke MGIEasy nucleïdezuurextractiekit was ≥95%, wat de LOD bevestig van de *PlexPCR*[®] SARS-CoV-2-assay bij gebruik met monsters die zijn geëxtraheerd met het MGISP-960-instrument (MGI).

Tabel 14. Succespercentage (%) monsters geëxtraheerd met MGISP-960								
		Extractiek	it 1	Extractiekit 1				
Monsters	Totaal aantal replicaten	Aantal correct geïdentificeerde	Trefpercentage	Aantal correct geïdentificeerde	Trefpercentage			
		replicaten	(%)	replicaten	(%)			
SARS-CoV-2- positieve monsters (2X LOD)	30	30	100	30	100			
SARS-CoV-2- negatieve monsters	60	60	100	60	100			

Tabel 15. Overzichtstabel met gemiddelde Cq-waarden, standaarddeviaties en %CV voor alle doelen.										
	Extractiepartij 1									
	ORF1a	ab (465-510)	RdRp	RdRp (533-580)			IC (533-610)		
Soort monster	Gemiddelde Cq SD %CV Gemiddelde Cq SD				SD	%CV	Gemiddelde Cq	SD	%CV	
SARS-positief	21,06	0,34	1,61	22,19	0,39	1,76	21,38	0,32	1.51	
SARS-negatief							21,62	0,44	2,05	
				Extra	actiepartij 2	!				
	ORF1a	ab (465-510)	RdRp	o (533-580)		IC ((533-610)		
Soort monster	Gemiddelde Cq	SD	%CV	Gemiddelde Cq	SD	%CV	Gemiddelde Cq	SD	%CV	
SARS-positief	22,20	0,38	1,70	23,27	0,41	1,76	21,44	0,34	1,60	
SARS-negatief							21,87	0,23	1,03	

16.2.3 Analytische specificiteit

Er werd een paneel van 20 micro-organismen geëvalueerd voor bewijs van kruisreactiviteit in de *PlexPCR*[®] SARS-CoV-2-assay. Hieronder bevonden zich organismen die vaak worden gevonden in de luchtwegen en ook organismen die nauw samenhangen met SARS-CoV-2. Dit onderzoek werd uitgevoerd op het LightCycler[®] 480 Instrument II. Een lijst met de geteste organismen wordt weergegeven in **Tabel 16**. Organismen werden getest op 1 x 10⁶ cfu/mL, 1 x 10⁵ pfu/mL of 10⁵ TCID₅₀ per mL tenzij anders aangegeven. Alle verdunningen werden bereid in negatieve nasofaryngeale uitstrijkjes in VTM. De testen werden in drievoud uitgevoerd bij afwezigheid van het positieve referentiemateriaal (SARS-CoV-2). Er werden bij geen van deze experimenten positieve signalen gegenereerd in de *PlexPCR*[®] SARS-CoV-2-assay bij afwezigheid van het target en er werd geen impact waargenomen op de prestatie van de assay bij aanwezigheid van hoge concentraties van de geteste micro-organismen.

Tabel 16. Op kruisreactiviteit geteste micro-or	ganismen
Organismen	Geteste concentratie
Humaan coronavirus 229E	5,00E+06 genomen/mL
Humaan coronavirus OC43	5,00E+06 genomen/mL
Adenovirus 1	1,00E+05 TCID₅₀/mL
Parainfluenzavirus 3	1,00E+05 TCID ₅₀ /mL
Influenza A-virus	1,00E+05 PFU/mL
Influenza B-virus	1,00E+05 PFU/mL
Enterovirus A71	1,00E+05 TCID₅₀/mL
Respiratoir syncytieel virus A	1,00E+05 PFU/mL
Rhinovirus 17	1,00E+05 TCID ₅₀ /mL
Chlamydophila pneumoniae	1,00E+06 CFU/mL
Haemophilus influenzae	5,00E+06 genomen/mL
Streptococcus pneumoniae	1,00E+06 CFU/mL
Streptococcus pyogenes	1,00E+06 CFU/mL
Bordetella pertussis	1,45E+05 genomen/mL
Mycoplasma pneumoniae	1,00E+06 CFU/mL
Samengevoegde menselijke neusspoeling	onverdund
Candida albicans	1,00E+06 CFU/mL
Pseudomonas aeruginosa	1,00E+06 CFU/mL
Staphylococcus epidermidis	1,00E+06 CFU/mL
Streptococcus salivarius	2,51E+08 genomen/mL

16.2.4 In silico-analyse

Er werd een *in silico*-analyse uitgevoerd om de mogelijkheid tot kruisreactiviteit te beoordelen van primers en sondes met aanvullende humane en niet-humane coronavirussen opgenomen in de *PlexPCR*[®] SARS-CoV-2-assay. De *PlexPCR*[®] SARS-CoV-2-assay vertoonde, gebaseerd op een homologiedrempel van >80%, geen voorspelde kruisreactiviteit met niet-coronavirussen of andere humane coronavirussequenties.

Specificiteit tegen niet-coronavirussequenties

De oligosequenties van de ORF1ab- en RdRp-assay werden gebruikt voor het vinden van niet-coronavirussequenties die nauw verband hielden met de targetregio om zo de mogelijkheid tot kruisreactiviteit te beoordelen. Er werd bij geen van de oligo's van de assay significante kruisreactiviteit waargenomen met niet-coronavirusorganismen.

Specificiteit tegen andere coronavirussen

De BLAST-run met het RdRp-assay-amplicon resulteerde in 3.027 coronavirussequenties. Bij analyse met CLC main workbench 20.0.4, waren de enige sequenties waarbij de oligo's van de assay zich kunnen binden de synthetische SARS-CoV-2-constructen en twee vleermuis-coronavirussequenties (MN996532.1 en KP876546.1). Er werd dus geen kruisreactiviteit met andere humane coronavirussequenties waargenomen.

De BLAST-run met het ORF1ab-assay-amplicon resulteerde in 272 coronavirussequenties. Bij analyse met CLC main workbench 20.0.4, waren de enige sequenties waarbij de oligo's van de assay zich kunnen binden de synthetische SARS-CoV-2-constructen. Er werd dus geen kruisreactiviteit met andere humane coronavirussequenties waargenomen.

16.2.5 Inclusiviteit

Op 1 juni 2020 werd de GISAID EpiCoV-database geraadpleegd. De resulterende dataset bevatte 24.462 SARS-CoV-2-genoomsequenties voor de ORF1ab-assay en de RdRp-assay.

Voor het aantonen van de inclusiviteit van de *PlexPCR*[®] SARS-CoV-2-assay werd de GISAID EpiCoV onafhankelijk bevraagd met elke oligonucleotide-primer en -sonde die in de assay was opgenomen. Minder dan 0,2% van de SARS-CoV-2-sequenties in de database (n >24.000 vanaf 1 juni 2020) had meer dan 1 discrepantie met een van de primers of sondes die in de *PlexPCR*[®] SARS-CoV-2-assay waren opgenomen. Monitoring is ongoing to ensure continued inclusivity to current strains and reported variants. Please contact tech@speedx.com.au for more information.

16.2.6 Potentieel interfererende substanties

Potentieel interfererende endogene en exogene substanties die aanwezig kunnen zijn in monsters uit de luchtwegen werden beoordeeld op hun impact op de prestatie van de *PlexPCR*[®] SARS-CoV-2-assay. Dit onderzoek werd uitgevoerd op het LightCycler[®] 480 Instrument II. Alle substanties werden in drievoud getest door middel van negatieve nasofaryngeale uitstrijkjes in VTM bij aanwezigheid en afwezigheid van de target. Er was geen bewijs van negatieve impact op de prestatie van de assay wanneer werd getest met kunstmatige monsters die de potentieel interfererende substanties in de aangegeven concentraties bevatten. De resultaten zijn samengevat in **Tabel 17**.

Tabel 17. Potentieel interfererende substanties in monsters uit de luchtwegen						
Potentieel interfererende substantie	Testconcentratie					
Fenylefrine	15% w/v					
Beclometasondipropionaat	5% v/v					
Zanamivir	3,3 mg/mL					
Ribavirine	2% w/v					
Mupirocine	6,6 mg/mL					
Tobramycine, aminoglycoside-antibioticum	4,4 µg/mL					
Menthol	6,9 mg/mL					

17 Klantondersteuning en technische ondersteuning

Neem contact op met de technische ondersteuning als u vragen hebt over de reactieopstelling, cyclusomstandigheden en andere vragen.

Tel: +61 2 9209 4169, E-mail: tech@speedx.com.au

18 Referenties

- 1. Novel Coronavirus (2019-nCoV) Situation Report 1, 21 januari 2020. Wereldgezondheidsorganisatie. Geraadpleegd op: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf.
- 2. Naming the coronavirus disease (COVID-19) and the virus that causes it. Wereldgezondheidsorganisatie. Geraadpleegd op: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.
- 3. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Geraadpleegd op: https://coronavirus.jhu.edu/map.html.

19 Bijlage 1: LightCycler[®] 480 Instrument II

De volgende informatie is gebaseerd op de LightCycler[®] 480-software (versie 1.5).

De *PlexPCR*[®] SARS-CoV-2-kit bevat kleurstoffen voor het LightCycler[®] 480 Instrument II. De *PlexPCR*[®] Colour Compensation-kit (catalogusnr. 90001) moet worden uitgevoerd en toegepast voor LC480 II-analyse (zie **paragraaf 19.3**). Deze kit is op aanvraag leverbaar.

19.1 Het LightCycler[®] 480 Instrument II (LC480 II) programmeren

Detectieformaat

Maak een aangepast Detection Format (detectieformaat)

Open Tools (Open hulpmiddelen) > Detection Formats (detectieformaten)

Maak een nieuw detectieformaat aan en noem dit '**SpeeDx Plex PCR**' (kan worden aangemaakt tijdens het genereren van het SpeeDx Colour Compensation-bestand (kleurcompensatiebestand) (zie **Afbeelding 2**).

Selecteer voor Filter Combination Selection (keuze filtercombinatie) de volgende (Excitation-Emission (excitatieemissie)):

	Tabel 18. Filtercombinaties*							
LC480 II	440-488	465-510	533-580	533-610	533-640	618-660		

[^]Deze Filter Combinations (filtercombinaties) zijn de standaardnamen voor de kanalen

Stel de Selected Filter Combination List (lijst met geselecteerde filtercombinaties) voor alle kanalen in als:

Melt Factor (smeltfactor): 1

Quant Factor (kwantitatieve factor): 10

Max Integration Time (maximale integratietijd) (s): 1

Afbeelding 2. Aangepast SpeeDx-detectieformaat

Γ	Filte	er Co	mbiı	nation	Se	lection					
				Em	iss	ion					
	Е		488	510	58(610	640	660			
	x	440	M		Г		Г	Г			
	i t	465		ম	Г	Г	Г	Г			
	a t	498			Г	Γ	Г	Г			
	i	533			M	N	М	Г			
	n	618						ন			
											Clear
	Cal	o to d		C	mbi	.	Lint		•		
Γ	Fyc	itatio	n File	er Co Imieci	on	Name	LISC	lolt	Quant	M	ax Integration
	F	ilter		Filte	r	nume	Fa	ctor	Factor		Time (Sec)
		440		488		440-48	8 1		10	1	
		465		510		465-51	01		10	1	
		533		580		533-58	01		10	1	
		533		610		533-61	01		10	1	
		533		640		533-64	01		10	1	
		618		660		618-66	0 1		10	1	

Instrumentinstellingen

Maak een aangepast **Detection Format** (detectieformaat)

Open Tools (open hulpmiddelen) > Instruments (instrumenten)

Voor Instrument Settings (instrumentinstellingen) > selecteer Barcode Enabled (barcode ingeschakeld)

Installatie voor experiment

Selecteer New Experiment (nieuw experiment)

Ga als volgt te werk op het tabblad Run Protocol (run-protocol)

Voor Detection Format (detectieformaat) selecteert u het aangepaste 'SpeeDx PlexPCR' (Afbeelding 3)

Selecteer Customize (aanpassen) >

Selecteer Integration Time Mode (modus integratietijd) > Dynamic (dynamisch)

Selecteer de volgende actieve Filter Combinations (filtercombinaties) die worden weergegeven in Tabel 19

Tabel 19. Kanalen voor PlexPCR [®] SARS-CoV-2-targets						
Kanaal	465-510	533-580	533-610			
SARS-CoV-2	ORF1ab	RdRp	Internal Control (interne controle)			

Afbeelding 3. Detection Format (detectieformaat) aanpassen

Detection Fe	ormats							
Detection	Detection Format SpeeDx PlexPCR -Integration Time Mode							
Oynan 🖉	nic O Manual							
Active	Filter Combination							
	440-488 (440-488)							
~	465-510 (465-510)							
~	533-580 (533-580)							
 Image: A state of the state of	533-610 (533-610)							
	533-640 (533-640)							
	618-660 (618-660)							

Om geautomatiseerde monsterdetectie in de analysesoftware mogelijk te maken, kent u naamtags toe aan de wells op de plaat (zie paragraaf 21.4)

Open de module Sample Editor (monstereditor)

Selecteer well

Bewerk **Sample Name** (monsternaam) zodat deze overeenkomt met de naamtags die zijn gedefinieerd in de Assays-module van de analysesoftware (zie **paragraaf 21.4**)

Monsters worden voorzien van een label in de vorm Voorvoegsel_Achtervoegsel (zoals weergegeven in Tabel 20 en Afbeelding 4) bijv. NEG_CoV

NB: De naamtags van monsters zijn hoofdlettergevoelig. De naamtag moet exact overeenkomen met de toegewezen namen in het run-bestand.

Tabel 20. Naamtags van monsters voor analysesoftware											
Soort monster	Voorvoegsel_ (in analysesoftware)	Achtervoegsel_ (in analysesoftware)	Naam monster (in analysesoftware)								
Regulier monster	Sample (Monster)	_CoV	Sample_CoV								
Negatieve controle	Ν	_CoV	N_CoV								
Positieve controle	Pa	_CoV	Pa_CoV								

Afbeelding 4. Sample Editor (monstereditor) - naamtags toewijzen aan wells

Pos	Filter combination	Color	Repl Of	Sample Name
A12	465-510 (465-510)			S_MG
A12	533-580 (533-580)			S_MG
A12	533-640 (533-640)			S_MG
B12	465-510 (465-510)			Pa_MG
B12	533-580 (533-580)			Pa_MG
B12	533-640 (533-640)			Pa_MG
C12	465-510 (465-510)			Pb_MG
C12	533-580 (533-580)			Pb_MG
C12	533-640 (533-640)			Pb_MG
G8	465-510 (465-510)			N_MG
G8	533-580 (533-580)			N_MG
G8	533-640 (533-640)			N_MG

Stel het Reaction Volume (reactievolume) in op > 10µL

Maak het volgende programma aan (in meer detail weergegeven in Afbeelding 5 - Afbeelding 9)

Tabel 21. Thermocycli	ng Program	(Thermocyclingpr	ogramma)		
Programmanaam	Cycles (cycli)	Target °C	Hold (duur)	Ramp Rate (toename) (°C/s) [‡]	Ramp Rate (toename) (°C/s) ^s
Reverse-transcriptie	1	48 °C	10 min	4,4	4,8
Polymerase-activatering	1	95 °C	2 min	4,4	4,8
Touch down cycling		95 °C	5 s	4,4	4,8
(touchdowncycli) ^o : Step down (stapsgewijze afname) -0,5 °C/cyclus	10	61 °C – 56,5 °C ^δ	30 s	2,2	2,5
Kwantificeringscycli+:	40	95 °C	5 s	4,4	4,8
Acquisitie/Detectie	40	52 °C⁺	50 s	2,2	2,5
Cooling (afkoeling)	1	40 °C	30 s	2,2	2,5

* Standaardtoename (96-wells plaat)

§ Standaardtoename (384-wells-plaat)

⁵ Stapgrootte: -0,5 °C/Cycle, Sec Target: 56 °C

+ Analysemodus: Kwantificering, Acquisitiemodus: Enkelvoudig

> Start Run (run starten)

Afbeelding 5. Thermocyclingprogramma – reverse-transcriptie

J LightCy	cler® 480	Software relea	ise 1.5.1.62											-		×
Instrument	: Virtu	al LightCycl	er 480 96	System II / Not Con	nected					Database:	My Compute	r (Trace	able)			Rocho
Window:	New	/ Experimen	t					•		User:	System Adm	in				Inocine
Experi-	(Run Proto	col			Data				Run No	tes				5D
ment	- Setup Detect	ion Format	SpeeDx	PlexPCR		-	Customize	Block Size	96	Plate	e ID	Re	eaction Vo	olume 10 📑	E	20
Subset Editor	Color	Comp ID			Lo	t No				Test ID		_			-	6
\square							Progra	ms							5	
Sample	\Box	Program N	ame								(Cycles	An	alysis Mode		
	(A)	Reverse 1	franscri	ption							1		None		-	동공
		Polymeras	se Activ	ation							1		None		- 7	
Analysis	Θ	Touchdown	1 Cyclin	g							10		None		-	(4)
\square	\cong	Cool Down	Sation C	Acting							1		None	leation	÷I	<u>v</u>
Denert		COOL DOW									-	•	Inome		÷.,	\frown
кероп	\smile							-								
\equiv						Reverse	Transcription T	emperature Ta	argets							Lם
Sum.		Target	(°C)	Acquisition Mode	Hol	ld (hh:mm:ss)	Ramp Rate (°	C/s) Acquisit	tions (p	per°C) Se	ec Target (°C)	Step Si	ze (°C)	Step Delay (cycles)		$\overline{\Delta}$
\square		• 48	- N	one	• 00:10	:00	4.4	•		÷0	÷	0	÷0		1	$\overline{}$
	\leq															(\mathbf{X})

Afbeelding 6. Thermocyclingprogramma – polymeraseactivering

LightCy	cler® 480 Software release 1.5.1.62			-	D X
Instrument	C Virtual LightCycler 480 96 System II / Not Connected	ed	Database: My Comp	iter (Traceable)	Pacha
Window:	New Experiment		User: System Ad	min	nucile
Experi-	Run Protocol	Data	Run	Notes	5
ment	Detection Format SpeeDx PlexPCR	Customize	Block Size 96 Plate ID	Reaction Volume 10 🛟	
Subset Editor	Color Comp ID	Lot No	Test ID		
\ge		Program	ns		
Sample Editor	Program Name			Cycles Analysis Mode	
Luntor	Reverse Transcription			None	· [곱-곱]
	Touchdown Cycling			None	
Analysis	Quantification Cycling			40 Quantification	- (%)
\equiv	Cool Down		1	None	
Report					
		Polymerase Activation T	emperature Targets		
Sum.	Target (°C) Acquisition Mode	Hold (hh:mm:ss) Ramp Rate (*0	C/s) Acquisitions (per °C) Sec Target (°C	C) Step Size (°C) Step Delay (cycles)	
-	95 None -	00:02:00 4.4	÷ • • •	÷0 ÷0	
					17
					(\mathbf{X})

Afbeelding 7. Thermocyclingprogramma - touchdowncycli

J LightCyc	:ler® 480	Software rele	ase 1.5.1.6	j2									-		×
Instrument	Virtu	al LightCyc	ler 480 9	6 System II / Not Connec	cted			Data	base:	My Compute	r (Trace	able)			Roche
Window:	Nev	v Experimer	nt				2	• User	:	System Adm	in				nocile
Experi-	-		Run Pro	otocol		Data				Run No	tes				<u>5</u>]]
ment	- Setup Detect	tion Format	SpeeD	x PlexPCR	•	Customize	Block Si	ize 96	Plate	e ID	Re	eaction Vol	ume 10 📑	Ξ	ĽV
Subset Editor	Color	Comp ID			Lot No			Те	st ID						୲
$ \ge$						Progra	ms								
Sample	\frown	Program I	lame							0	ycles	Ana	lysis Mode		
Editor	A	Reverse	Transc	ription						1	-	None		•	몽몽
		Polymera	se Act:	ivation						1		None		-	
Analysis	Θ	Quantifi	cation	Cycling						40	÷	Quantifi	ication	÷	(↔)
\equiv	$\overline{\mathbf{\nabla}}$	Cool Dow	n							1	÷	None		•	
Report	\mathbf{r}														
					Touch	down Cycling Te	emperatur	e Targets							
Sum.		Target	(°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (C/s) Acq	uisitions (per °	C) Se	ec Target (°C)	Step Si	ze (°C)	Step Delay (cycles)		$\overline{\sim}$
	$(\mathbf{\Phi})$	95	÷	None	• 00:00:05	4.4	÷		0	÷	0	÷ 0	.,,,	÷	€>
		61	÷	None	00:00:30	2.2	÷		56	; 🕂	0.5	÷0		Ĵ	÷
															\bigotimes
	$\mathbf{\sim}$														

Afbeelding 8. Thermocyclingprogramma – kwantificeringscycli

LightCy	cler® 480	Software release 1.5.	1.62							-		×
Instrument	: Virtu	al LightCycler 48	0 96 System II / Not Conne	ected			Database:	My Computer (Tra	aceable)			Rasha
Window:	New	/ Experiment				•	User:	System Admin				Inoche
Experi-	(Run F	Protocol		Data			Run Notes				5D
ment	- Setup Detect	ion Format Spe	eDx PlexPCR		Customize	Block Size 96	Plate	D	Reaction Volu	ıme 10 🚊		
Subset Editor	Color	Comp ID		Lot No			Test ID					୲ୖ
\equiv					Program	ms						
Sample	\frown	Program Name						Cycle	es Anal	ysis Mode		
	A	Reverse Trans	scription					1	None		-	몽몽
\square	$\underline{\underline{e}}$	Polymerase Ad	tivation					1	None		- 7	
Analysis	Θ	Touchdown Cyc	ling					10	None		-	
	S.	Quantificatio	on cycling					40	Quantifi	cation	Ľ.	W
		COOL DOWN						1	- None		Щ.)	
Report	\square											
\equiv				Quanti	fication Cycling Te	emperature Targe	ets					
Sum.		Target (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°0	C/s) Acquisitions	s (per °C) Se	c Target (°C) Step	p Size (°C)	Step Delay (cycles)		$\overline{\sim}$
		95	None	• 00:00:05	4.4	*	÷ 0	÷ 0	÷ 0		÷	$\overline{\mathbf{V}}$
· · · · ·		52	Single	00:00:50	2.2	÷	0	÷ 0	÷0		1	
	S											\bigotimes
												\odot
	C J											

Afbeelding 9. Thermocyclingprogramma - afkoeling

🗗 LightCy	cler® 4	80 Softv	vare release 1	.5.1.62												-	\Box \times
Instrument	: Vir	rtual Li	ghtCycler	480 96 System I	I / Not Connec	cted					Data	abase:	My Compute	er (Traceable)			
Window:	Ne	ew Exp	eriment							•	Use	r:	System Adm	in			Hoche
Experi-	Cot		Ru	Protocol				Data					Run No	otes			5]
ment	Dete	ection F	ormat Sp	eeDx PlexPC	ι		J (Customize	Bloc	k Size	96	Plate	e ID	Reactio	n Volum	ie 10 🍷	
Subset Editor	Colo	or Com	p ID			Lot No					Te	st ID					
Sample								Progra	ms					.			
Editor	Ĭ	Rev	gram Nam Verse Tra	e nscription									1	None	Analysi	IS MODE	· 23
\square		Pol	ymerase	Activation									1	• None			
Analysis	Θ	Qua	ntificat	ion Cycling									40	Quar	: tifica	tion	
	\checkmark	Coc	1 Down										1	None			
Report								•									
			Target (°C)	Acqui	ition Mode	Hold (hh:n	Coo nm:ss)	I Down Tempe Ramp Rate (c/s)	Targets Acquisit	ions (per	°C) Se	c Target (°C)	Step Size (°C) SI	tep Delav	
Sum.	Ð	▶ 40		None		• 00:00:30		2.2	-			-0		0	•	(cycles)	$\langle \cdot \rangle$
				<u>.</u>					-				_		•		
	Y																(\mathbf{X})
	\mathbf{r}	J															
								Overview	•								
	10	0															14
	0,) em	0		7 188888	AAAAA A		N N N N	LAAAA.	111	LAA.	1 I I I	LA A	8888	LAAAA.	A & A &		5
	peratu	0		ן טטטטטי	ווחחחחרו	JUUUUU	UUU	ԱԱԱԱՆ	UЦ	UUU	UUU	UUL	NUUU	UUUUL	UUL		
	Hen 4 3	0														L L	
	C	1:00:00	0:1	0:14	0:21:43	0:33:14	0:44: Es	43 timated Time (h):56:12 : mm:ss)	I	1:07:41		1:19:09	1:30:38		1:42:07	
	A Ten	pply nplate										End	d Program	+ 10 Cycles		<u>S</u> tart Run	
								•									-
<u>\!\</u>																	(?)
									_								

Wanneer het cyclingprogramma is afgelopen moet een .ixo -bestand worden geëxporteerd voor analyse in de *PlexPCR*[®] SARS-CoV-2 (LC480)-analysesoftware.

Selecteer Export (Exporteren)

Sla dit op een duidelijk herkenbare locatie op

19.2 Het opzetten van een macrosjabloon voor het LightCycler® 480 Instrument II

Gegevensinterpretatie kan worden uitgevoerd met gebruik van de LC480 II on-board software door een macrosjabloon te gebruiken met de onderstaande gevalideerde parameters. Neem voor verdere ondersteuning contact op met <u>tech@speedx.com.au</u>.

Instellingen Macro-sjabloon

Selecteer een run-bestand met de SpeeDx PlexPCR-cyclus-parameters

Selecteer Analyse > Abs hoev./Fitpunten > verander de naam in Abs hoev./Fitpunten_465-510_ORF1ab > Ok

Afbeelding 10. Abs hoev./Fitpunten - 465-510 ORF1ab

Experi-	Analyses Overview			_	_		_			_	_	_	_	_	_			
ment	Create New Analysis	Cre	ate r	new	anal	lysis	;											
Subset Editor Sample Editor	Abs Quant/2nd Derivative Max Abs Quant/Fit Points Advanced Relative Quantification Basic Relative Quantification Color Compensation Endpoint Genotyping	Ar Su Pr	naly ubse rogra	sis et am	Тур	e	* * * *	Abs All Qua Abs	Qu Sa nti Ou	ant/ mple fica	(Fit satio	Po. n c	int: ycl:	s ing s 46	5-51	0 OR1	Tlab	*
Analysis Report Sum.	Melt Curve Genotyping Tm Calling	· · · · · · · · · · · · · · · · · · ·																
																	0	, 8

Selecteer Filter Comb 465 - 510

Pas de Kleurcompensatie toe voor alle kanalen > Ok

Selecteer het tabblad Cyclusbereik > Achtergrondinstellingen > bewerk de Min Offset en Max Offset > Ok

Afbeelding 11. Achtergrondinstellingen - 465-510 ORF1ab

	Background Settings		
	Min Offset	Min Position 2	
	Max Offset 7 📥	Max Position 8	
Selecteer het tabblad Analyse	en zorg ervoor dat de volg	gende instelling is geselecteerd	Threshold (Auto)

Selecteer het tabblad Geluidsband en zorg ervoor dat de volgende instelling is geselecteerd

Klik op **Calculate** (als een monstercurve de achtergrondregio heeft doorkruist, verschijnt de volgende boodschap (Afbeelding 12); de gebruiker moet het monster verdunnen en opnieuw testen) > **Ok** om verder te gaan met de analyse

Noiseband (Auto) Klik op het

Afbeelding 12. Waarschuwingsbericht geluidsband

LightCycler® 480	×
Some samples exceed the noiseband value in the calculation region.	e background
	\bigcirc

Selecteer Als sjabloon opslaan met behulp van de map Sjablonen > Analysesjablonen en vermeld het kanaal en doel in de naamindeling > Ok

Save Template 🖻 🚖 Root ~ 😑 📋 System Admin Macros Preferences 🗄 🛅 Special Data Templates É nal 14 Report Templates 🗋 Run Templates 🛅 Sample Templates Subset Templates Name Abs Quant/Fit Points_465-510_ORFlab \bigcirc -pictogram om de analyseparameters die voor het kanaal zijn ingesteld op te slaan

Afbeelding 13. Opslaan analysesjabloon Abs hoev./Fitpunten - 465-510 ORF1ab

Klik op het emaken -pictogram om een **nieuwe analyse** te maken

Selecteer Abs hoev./Fitpunten > wijzig de naam in Abs hoev./Fitpunten_533-580_RdRp > Ok

Create new analysi	is	
Analysis Type	* Abs Quant/Fit Points	•
Subset	* All Samples	•
Program	* Quantification cycling	•
Name	* Abs Quant/Fit Points_533-580_RdRp	
1 2 3 4 5 1 A B C D F G J K M M J K N O		
		$\overline{\mathbf{S}}$

Afbeelding 14. Abs hoev./Fitpunten 533-580 RdRp

Selecteer Filter Comb 533 - 580

Pas de Kleurcompensatie toe voor alle kanalen > Ok

Selecteer het tabblad Cyclusbereik > Achtergrondinstellingen > bewerk de Min Offset en Max Offset > Ok

Afbeelding 15 Achtergrondinstellingen - 533-6580 RdRp

Background Settings		
Min Offset 1	Min Position 2	
Max Offset 7	Max Position 8	
		0
		Threshold

Selecteer het tabblad Analyse en zorg ervoor dat de volgende instelling is geselecteerd

d Noiseband (Auto)

(Auto

Selecteer het tabblad Geluidsband en zorg ervoor dat de volgende instelling is geselecteerd

Klik op **Calculate** (als een monstercurve de achtergrondregio heeft doorkruist, verschijnt de volgende boodschap (Afbeelding 16); de gebruiker moet het monster verdunnen en opnieuw testen) > **Ok** om verder te gaan met de analyse

Afbeelding 16. Waarschuwingsbericht geluidsband

LightCycler® 480	×
Some samples exceed the noiseband value in the calculation region.	background
	\bigcirc

Selecteer Als sjabloon opslaan met behulp van de map Sjablonen > Analysesjablonen en vermeld het kanaal en doel in de naamindeling > Ok

🗄 💼 System Admin	
Experiments	
Macros	
🗈 💼 Preferences	
🕀 👝 Special Data	
E- Templates	
Analysis Templates	
Bun Templates	
Sample Templates	
Subset Templates	
ne Abs Quant/Fit Points_533-580_RdRp	

Afbeelding 17. Opslaan analysesjabloon Abs hoev./Fitpunten - 533-580 RdRp

Klik op het

-pictogram om de analyseparameters die voor het kanaal zijn ingesteld op te slaan

Œ Klik op het

-pictogram om een nieuwe analyse te maken

Selecteer Abs hoev./Fitpunten > wijzig de naam in Abs hoev./Fitpunten_533-610_IC > > Ok.

Analysis Type	*	Ał	s	Qua	nt	/ F	it	P	oi	nt	s	_	_	_	_	_	_	_	_	_	•
Subset	*	AJ	11	San	.pl	es															•
Program	*	Qı	lan	tif	ic	at.	io	n (су	cl	ir	ıg									•
Name	*	Ał	s	Qua	nt	/ F	it	P	oi	nt	s	53	33-	61	.0_	IC	J				
1 2 3 4 5 A B C D F G J K N P N P K																			ور		

Afbeelding 18. Abs hoev./Fitpunten 533-610 Interne controle

Selecteer Filtercomb 533 - 610

Selecteer het tabblad Cyclusbereik > Achtergrondinstellingen > bewerk de Min Offset en Max Offset > Ok

Afbeelding 19. Achtergrondinstellingen - 533-610 Interne controle

Selecteer Als sjabloon opslaan met behulp van de map Sjablonen > Analysesjablonen en vermeld het kanaal en doel in de naamindeling > Ok

Klik op Berekenen

Afbeelding 20. Opslaan analysesjabloon Abs hoev./Fitpunten - 533-610 Interne controle

Save Template	
System Admin Experiments Macros Special Data Templates Report Templates Sample Templates Sample Templates Sample Templates Sample Templates	^
	*
Mame Abs Quant/Fit Points_533-610_IC	
	$\bigcirc \bigotimes$

Selecteer het tabblad Samenvatting > Opslaan als macro > Huidige kleurcompensatiekeuzes

Experia	Experiment name: 210416 D8094 Nike Jan_Demo
ment	Dested on: 10/19/2021 11:27:43 AM
	Leaved by: 5pedax Law modified on: 10/18/2021 11:43:41 AM
Subset	Last modified by: Speeds Software version LSA60 15 15 62
Editor	Revision history complete: Yes
H	Applied template:
Sample	1: Respi 384 well cycling Run Protocol
Editor	Runs Started at 4/16/2021 3:50:12 PM and completed at 4/16/2021 5:11:56 PM.
	Instrument Dir 123
Analysis	Prise ID: 10/24/351 Operator: Speedx
	Programs
0	1: Reverse transcription 1 cycle(s) None 2: Reverse transcription 1 cycle(s) None
кероп	S Touchdwar cycling 110 Cyclets None
	4. Uuanthication cycling 40 cycle[s] Uuanthication 5 Cool down 1 cycle[s] None
Sum.	Block type: 384 wells Select CC Type
	Detection format:
	Name: SpeeDx 6-plex Create a kit or macros and temprates.
	Automatication Automatication Automatication Automatication
	Active Name Metifactor
	Yes 485-510 1 Yes 533-580 1
	Yes 533610 1
	Yes 618 660 1 10 1 second(s)
	10 1 10 1 second(s)
	Anayus mode: 1: Abs Quant/FR Points for All Samples (of type "Abs Quant/Fit Pts")
	Created on: 10/18/2021 11:34:27 AM Created un: Stanedu
	Last modified on: 10/18/2021 11:37:19 AM
	Lan mannu y, aperus
	2 Abs Quant/Fit Fromis for All Samples [ENTER NAME. HEHE] [of type "Abs Quant/Fit Pts"] Created on 10/18/2021 11:33:34 AM
	Created by Speeds Last model on 10/18/2021 11:43:41 AM
	Last modified by: Speeds
	Save as Macro

Afbeelding 21. CC-type wordt geselecteerd

Dit macrosjabloon kan vanaf nu worden geselecteerd bij het instellen van een run.

Instelling macro-sjabloon

Selecteer Nieuw experiment uit Macro geselecteerd

Instrument: Window:	LightCycler 480 SN 7123 / Standby (no MWP) Overview	Database: User:	Research Database (Research) Speedx
ð	LightCycler® 480 Software release 1.5.1.62 SP3 Version 1.5.1.62	3	
	Cene Scanning Endpoint Genotyping	typing	Experiment Creation Plates White Plates Clear Plates New Experiment New Experiment from Macro New Experiment from Template Tasks Qpen Existing Object

Afbeelding 22. Er wordt een Nieuw experiment uit Macro geselecteerd

Selecteer het bestand uit de map Macros > Ok

Afbeelding 23. Macro-sjabloon wordt geselecteerd

C	reate Experiment from Macro Macros		
	Name	A Location	Creation date
	SARS-CoV-2 Run + Analysis Macro	/Speedx/Macros	11/17/2021 1:52:51 PM
I			
L	J		
F	Plate ID		

Plaats de voorbereide PCR-plaat als de volgende melding verschijnt > Ok , waar de run automatisch begint

Afbeelding 24. Voeg plaatbericht in

Ga verder met het gebruik van de **Subset-editor** en **Monster-editor** om te zorgen voor de juiste labeling voor de uitvoer van de resultaten

19.3 Colour Compensation (kleurcompensatie) voor LightCycler® 480 Instrument II

NB: De *PlexPCR*[®] Colour Compensation-kit (kleurcompensatiekit) (catalogusnr. 90001) moet worden uitgevoerd en toegepast voor LC480 II-analyse. Deze kit is op aanvraag leverbaar.

Om de analyse uit te voeren, moet de Sample Name (monsternaam) van de kleurcompensatiereacties worden gelabeld zoals weergegeven in Tabel 22.

Wanneer het cyclingprogramma is afgelopen moet een .ixo -bestand worden geëxporteerd voor analyse in de *PlexPCR*[®] SARS-CoV-2 (LC480)-analysesoftware.

Selecteer **Export** (Exporteren)

Sla dit op een duidelijk herkenbare locatie op

Tabel 22. Monsternaam voor kleurcompensatiereacties voor de analysesoftware							
			React	ies			
	BLANK (BLANCO)	488 mix	510 mix (510- mix)	580 mix (580- mix)	610 mix (610- mix)	640 mix (640- mix)	660 mix (660-mix)
Dominant kanaal	Water	440-488	465-510	533-580	533-610	533-640	610-660
Naam monster	BLANK (BLANCO)	440-488	465-510	533-580	533-610	533-640	610-660

19.4 Interpretatie van de resultaten

Gegevensinterpretatie kan worden uitgevoerd met gebruik van de LC480 II on-board software of de *PlexPCR*[®] SARS-CoV-2 (LC480)analysesoftware. De *PlexPCR*[®] SARS-CoV-2 (LC480)-analysesoftware kan op verzoek worden geleverd. Neem voor meer informatie contact op met <u>tech@speedx.com.au</u>.

Voor interpretatie van resultaten zonder de *PlexPCR*[®] SARS-CoV-2 (LC480)-analysesoftware moet elk monster apart worden geanalyseerd. Zie **Tabel 23** voor informatie over hoe signalen van verschillende filtercombinaties moeten worden geïnterpreteerd.

Elke Cp die binnen de grenswaarde wordt geregistreerd, met visuele bevestiging van amplificatiecurve, is een positief resultaat (**Tabel** 23). Voorbeelden van amplificatiecurves worden weergegeven in **Afbeelding 25.**

NB: NTC-sample mag in geen enkele well een signaal produceren:

→ Resultaat is ONGELDIG en PCR moet worden HERHAALD.

Internal Control (interne controle)

De interne controle houdt extractie en PCR-inhibitie in de gaten. De interne controle is geldig als het 533-610 kanaal een Cp registreert binnen de grenswaarde (**Tabel 23**). Het is echter mogelijk om een positief signaal te hebben voor elk doel-assay (ORF1ab of RdRp) als de interne controle negatief is. Voor dergelijke samples wordt de aanwezigheid van het nog steeds opgevat als een geldig resultaat.

NB: Voor samples waar doel-assays negatief zijn, en de interne controle ook negatief is:

 \rightarrow Resultaat is ONGELDIG en de extractie en PCR moeten worden HERHAALD.

Tabel 23. Interpretatie van resultaten (LC480 II)							
	Target						
Interpretatie	ORF1ab (465-510)	RdRp (533-580)	Interne controle (533-610) ^				
SARS-CoV-2 detected	< 31	n.v.t.	n.v.t.				
SARS-CoV-2 detected	n.v.t.	< 31	n.v.t.				
SARS-CoV-2 niet gedetecteerd. IC geldig.	≥ 31	≥ 31	≤ 26				
IC ongeldig. Monster opnieuw extraheren en opnieuw testen.	≥ 31	≥ 31	≥ 26				

^Als de interne controle negatief is, maar een doel-assay is positief, dan is het resultaat nog steeds geldig.

Zie Bijlage A: Interpretatie van de resultaten voor instructies over het gebruik van de PlexPCR® SARS-CoV-2 (LC480)analysesoftware.

20 Bijlage 2: Bio-Rad CFX96[™] Dx en CFX96 Touch[™] realtime PCR-systeem

De volgende informatie is gebaseerd op de CFX Manager Dx-software (versie 3.1).

De *PlexPCR*[®] SARS-CoV-2-kit bevat kleurstoffen voor het CFX96 Dx-systeem. Er wordt gebruikgemaakt van standaard kleurstofkalibraties voor alle kanalen. Kalibratie door de gebruiker is niet nodig.

20.4 Het CFX96[™] Dx en CFX96 Touch[™] realtime PCR-detectiesysteem (CFX96 Dx, CFX96 Touch) programmeren

Selecteer View (weergave) > open Run Setup (run instellen)

In Run Setup (run instellen) > tabblad Protocol (protocol) > selecteert u Create New (nieuwe aanmaken)

In de Protocol Editor (protocoleditor) (zie Afbeelding 26):

Stel Sample Volume (monstervolume) in op > 10 µL

Maak het volgende thermocyclingprogramma aan en sla dit op als '**SpeeDx PCR**'. Dit protocol kan worden geselecteerd voor toekomstige runs.

Voor touchdowncycli selecteert u stap 3 en selecteert u **Step options** (stappenopties) > Increment (toename): -0,5 °C/cyclus (in meer detail weergegeven in **Afbeelding 27**).

Tabel 24. Thermocycling Program (Thermocyclingprogramma)					
Programmanaam	Cycles (cycli)	Target °C	Hold (duur)		
Reverse-transcriptie	1	48 °C	10 min		
Polymerase-activatering	1	95 °C	2 min		
Touch down cycling		95 °C	5 s		
Step down (stapsgewijze afname) -0,5 °C/cyclus	10	61 °C – 56,5 °C ^ŏ	30 s		
Quantification cycling		95 °C	5 s		
Acquisitie/detectie	40	52 °C⁺	50s		

⁵ Step options (stappenopties) > Increment (toename): -0,5 °C/cyclus

* Add Plate Read to Step (plaat lezen toevoegen aan stap)

	sen step Arter	Sample	e Volume 10	µl Est.	Kun Time 01:42	2:00 7	
1	2	3	4	5	6	7	8
48.0 C	95.0 C 2:00	95.0 C 0:05	61.0 C 0:30	G O T O	95.0 C 0:05	52.0 C 0:50	G O T O
Insert Step			C for 10:00	3 9 x	<		6 39 x
Insert Grad	ient	→ 3 95.0 4 61.0 Decr → 5 GOT → 6 95.0	C for 0:05 C for 0:30 ement tempera O 3 , 9 C for 0:05	ture by -0.5 more times	C per cycle		
Insert Melt	Curve	7 52.0 + Pla	C for 0:50 te Read O C , 39	more times			
Add Plate R	lead to Step	END					

Afbeelding 26. Thermocycling Protocol (thermocyclingprotocol) – Graphical view (grafische weergave)

Step Options				×
Step 4			0	iradient
	Plate R	lead	A	
Temperature	61.0	°C	В	
Gradient		°C	С	
Increment	-0.5	°C/cycle	D	
Ramp Rate		°C/sec	E	
Time	0:30	sec/cycle	F	
Extend		sec/cycle	G	_
	Beep	,	Н	
			ОК	Cancel

In Run Setup (run instellen) > tabblad Plate (plaat)

Selecteer Create New (nieuwe maken)

Selecteer Settings (instellingen) > Plate Type (soort plaat) > Selecteer BR Clear (BR transparant)

Stel **Scan mode** (scanmodus) in op > All channels (alle kanalen)

Selecteer Fluorophores (fluoforen) > FAM, HEX, Texas Red (zie Tabel 25)

Selecteer wells die monsters bevatten, wijs het **Sample Type** (monstertype) toe en controleer **Load** (belasting) voor fluoroforen (FAM, HEX, Texas Red)

Sla de plaat op

Tabel 25. Kanalen voor <i>PlexPCR[®]</i> SARS-CoV-2-targets											
Kanaal	FAM	HEX	Texas Red								
SARS-CoV-2	ORF1ab	RdRp	Internal Control (interne controle)								

In **Run Setup** (run instellen) > tabblad **Start Run** (run starten)

Selecteer blok

Start Run (run starten)

Om geautomatiseerde monsterdetectie in de analysesoftware mogelijk te maken kent u naamtags toe aan de wells op de plaat.

Open de module Plate Setup (plaat instellen)

Selecteer well

Bewerk **Sample Name** (monsternaam) zodat deze overeenkomt met de naamtags die zijn gedefinieerd in de **Assays**-module van de analysesoftware (zie **paragraaf 21.4**)

Monsters worden voorzien van een label in de vorm *Voorvoegsel_Achtervoegsel* (zoals weergegeven in **Tabel 26** en **Afbeelding 28**) bijv. NEG_CoV

NB: De naamtags van monsters zijn hoofdlettergevoelig. De naamtag moet exact overeenkomen met de toegewezen namen in het run-bestand.

Tabel 26. Naamtags van monsters voor analysesoftware										
Soort monster	Voorvoegsel_ (in analysesoftware)	Achtervoegsel_ (in analysesoftware)	Naam monster (in analysesoftware)							
Regulier monster	Sample (Monster)	_CoV	Sample_CoV							
Negatieve controle	Ν	_CoV	N_CoV							
Positieve controle	Ра	_CoV	Pa_CoV							

Afbeelding 28. Sample Editor (monstereditor) - Naamtags toewijzen aan wells

20.2 Interpretatie van de resultaten met behulp van de ingebouwde CFX-software

Gegevensinterpretatie kan worden uitgevoerd met de ingebouwde CFX-software door de onderstaande gevalideerde parameters te gebruiken. Neem voor verdere ondersteuning contact op met <u>tech@speedx.com.au</u>.

Selecteer een run-bestand met de SpeeDx PlexPCR-cyclus-parameters

Zorg ervoor dat er naast de kanalen die in Tabel 25 worden vermeld, geen andere kanalen zijn geselecteerd.

Klik op Settings (instellingen) > Cq Determination Mode (Cq-bepalingsmodus) en selecteer Single Threshold (enkele drempel) (Afbeelding 29)

Afbeelding 29. Instellingen Cq-bepalingsmodus

Klik op Settings (instellingen) > Baseline Setting (baseline-instelling) en selecteer Baseline Subtracted Curve Fit (baseline afgetrokken curve-aanpassing) en schakel Apply Fluorescence Drift Correction (verloopcorrectie fluorescentie toepassen) in (Afbeelding 30)

n Da	ata Analy	sis - 2107	14 PF031	Touch2.p	ocrd																-			×
File	View	Setting	s Expo	rt Too	ls												6	Plate	Setup •	-	Fluor	ophore	~	?
	Quantifica	Co	q Determi	ination M	lode	•	ession	ee For	Point	Allelia	Discrimin	ation	20	Custom	Data View	1	00	P	Run Infor	mation				
		🗾 🖁 Ba	aseline Se	tting		•	N	lo Baselir	e Subtra	ction		duvii.	ŝ	Custom	Data view	1	l ac	1	Harrino	Induori				
		🛃 Ar	nalysis M	ode		•	В	aseline S	ubtracted	1			L											
	f	📶 ()	cles to A	nalyze			✓ B	aseline S	ubtracted	Curve Fi	t		L											
Ι,	2000 ±	Ba	seline Th	reshold			- A	pply Flue	orescence	Drift Co	rection				No welle de	eionat	ad as (amole	Tune et an	dand	_			
'		🔍 Tra	ace Styles					/	_	1.1					to treas de	ingi inco		Jumpro	- Type atan	aara.				
1	500	te Pl	ate Setup			,	17			~														
"_ "	Ŧ	In	clude All	Excluded	i Wells]														
E							11/1																	
י	1000 Ŧ	• M	iouse Hig	niighting	 		//			1														
			store Der		dow Layo		1/ 1																	
	500 1						/																	
	Į.						-			1														
	° + •		+ +				11																	
	0		10		20		30		40															
					Cycl	es			Lo Lo	g Scale														
FA 🗹	M 🗹 I	HEX 🗹] Texas R	ed 🗌	Cy5	Quasar	705													S	itep N	umber:	7	~
	1	2	3	4	5	6	7	8	9	10	11	12		Well	Fluor	Δ	Target	\diamond	Content	♦ Sam	ple -	👌 Cq	\diamond	
A	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	k	E01	HEX			ι	Jnkn			6.	01	
														E02	HEX			l	Jnkn			21.	19	
В	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Uni	k	E03	HEX			ι	Jnkn			23.	36	
с	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	k	E04	HEX			L.	Jnkn			17.	51	
-														E05	HEX				Jnkn			N		
D	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Uni	k	E06	HEX				Jnkn			N		
E	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	k	E08	HEX			- 1	Joko			N		
-														E09	HEX			i	Jnkn			N	/A	
F	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Un	k	E10	HEX			ι	Jnkn			N	/A	
G	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	k	E11	HEX			l	Jnkn			N	/A	
														E12	HEX			L	Jnkn			N	/A	
н	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Un	ĸ	F01	HEX			l	Jnkn			6.	09	-
P													-	I FAA	1.1000.0									
C	Laborat				C	AP -	-	Diet -		-			D											

Afbeelding 30. Baseline-instellingen

Selecteer het tabblad **End Point** (eindpunt) om de fluorescentiewaarden van het eindpunt te bekijken en selecteer de **FAM** fluorophore (FAM-fluorofoor) en noteer de 'Highest RFU value' (hoogste RFU-waarde) (Afbeelding 31)

🌈 Da	ta Anal	ysis - 2	10714 P	F031 To	uch2_ta	agged_	Manua	I_Thresh	old.pc	rd								-	
File	View	Setti	ngs	Export	Tool	s										🐏 Plate S	etup 🝷 🧲	Fluoroph	nore 🗸 ?
	Quantific	ation [a Q.	uantificat	tion Data		Gene	Expressi	on 🛄	😬 End	Point	🔛 Allel	c Discriminati	on 🌺	Custom Data Vie	ew 🔮 QC	📳 Run Ir	formation	
Setting Fluo	gs rophore:	:	F	AM		~							Well 4	Fluor	🛇 Content 🔇	Sample 🔇	End RFU ♦	Call 👌	
End	Cycles '	To Avera	age: 5	_	_								A01	FAM	Unkn		4.40		
	REI le		-	amont o	f Panco								A02	FAM	Unkn		1336	(+) Positive	
	arcent (of Range	, i		i nanye								A03	FAM	Unkn		1308	(+) Positive	
	GOGINE	/ nung		0.0		•							A04	FAM	Neg Ctrl		9.26		
Result	S eet REII	value:	1.04										A12	FAM	NTC		-1.04		
High	eat REI	Value:	1472										B01	FAM	Unkn		6.13		
Nec	ative Co	ntrol Av	14/3	7 5 5									B02	FAM	Unkn		1422	(+) Positive	
Cut	Off Value	1.154	ciaye.	7.55									B03	FAM	Unkn		1365	(+) Positive	
Cur		5. 104											B04	FAM	Neg Ctrl		6.91		
													B12	FAM	NTC		0.294		
													C01	FAM	Unkn		5.73		=
													C02	FAM	Unkn		1337	(+) Positive	
	1	2	3	4	5	6	7	8	9	10	11	12	C03	FAM	Unkn		1347	(+) Positive	
													C04	FAM	Neg Ctrl		6.48		
A	Unk	Unk	Unk	Neg								NTC	C12	FAM	NTC		2.52		
													D01	FAM	Unkn		6.66		
В	UNK	Unk	UNK	Neg								NIC	D02	FAM	Unkn		1324	(+) Positive	
-	Link	Link	Link	Neg								NTC	D03	FAM	Unkn		3.95		
	UIIK	UNK	UIIK	iveg								NIC	D04	FAM	Pos Ctrl		1333	(+) Positive	
n	Link	Link	Link	Por									E01	FAM	Unkn		7.50		
Ľ		UIIK		105									E02	FAM	Unkn		1253	(+) Positive	
F	Unk	Unk	Unk	Pos									E03	FAM	Unkn		1351	(+) Positive	
-													E04	FAM	Pos Ctrl		1354	(+) Positive	
F	Unk	Unk	Unk	Pos									F01	FAM	Unkn		9.07		
													F02	FAM	Unkn		1198	(+) Positive	
G	Unk	Unk	Unk										F03	FAM	Unkn		1473	(+) Positive	
													F04	FAM	Pos Ctrl		1419	(+) Positive	
н	Unk	Unk	Unk										G01	FAM	Unkn		1218	(+) Positive	Y
														FAM	HEX Texas	Red			
Compl	Completed Scan Mode: All Channels Plate Type: BR Clear Baseline Setting: Baseline Subtracted Curve Fit																		

Afbeelding 31. Noteer de 'Highest RFU value' (hoogste RFU-waarde)

Ga terug naar het tabblad Quantification (kwantificering) en maak de selectie van de HEX- en Texas Red-fluoroforen ongedaan. Selecteer vervolgens Settings (instellingen) > Baseline Threshold (baseline-drempel) (Afbeelding 32)

Afbeelding 32. Controleer de baseline-drempel van elk kanaal

Schakel voor alle wells **Baseline Cycles** (baseline-cycli) > **Auto Calculated** (automatisch berekend) in en zet **Single Threshold** (enkele drempel) op **User Defined** (door de gebruiker gedefinieerd) > wijzig de waarde in **10%** van de **'Highest RFU value'** (hoogste RFU-waarde) voor dat kanaal, zoals bepaald met **Afbeelding 31**. *Deze stap moet worden uitgevoerd met één kanaal tegelijk* geselecteerd (**Afbeelding 33**)

1	7 0	Juantificat	tion	Quanti	fication Da	ta 💼	Gene E	Raseli	ne Threshold	1 to	-	<u>~</u>	×				
		f			Amp	olification		Baseline Cycles									
	14	400 [‡] …		••••				Au	to Calculated	D-	lal indianta a						
	12	200 £					1		er Defined	во	Id Indicates a	changed val	ue.				
	10	DOO							Well △	Fluor 🛇	Baseline Begin	End 👌					
						/		1	A01	FAM	10	40					
Ē	, (500 <u>+</u>				1		2	A02	FAM	2	16					
1	- 6	600 <u>+</u>		· · · · {· ·			-//////////////////////////////////////	3	A03	FAM	2	19					
	4	400 <u>‡</u>						4	A04	FAM	10	40	=				
				÷				5	A12	FAM	10	40					
	4	200 <u> </u>						6	B01	FAM	10	40					
		• ‡·						7	B02	FAM	2	18					
		0		10		20		8	B03	FAM	2	16					
						Cycle	es	9	BU4	FAM	10	40					
	ΕΔI	M D	HEY [Tevael	Red		_	11	012	EAM	10	40					
Ľ				Texas	icu			12	C02	FAM	2	40					
		1	2	3	4	5	6	13	C02	FAM	2	18					
	A	Unk	Unk	Unk	Neg			14	C04	FAM	10	40					
E.	_							15	C12	FAM	10	40					
	в	UNK	UNK	Unk	Neg			16	D01	FAM	10	40					
0	C	Unk	Unk	Unk	Neg			17	D02	FAM	2	16	-				
	D	Unk	Unk	Unk	Pos				All Selected Row	vs: Begin: 40	÷ Er	id: 1	Ť				
	E	Unk	Unk	Unk	Pos				Re	eset All User Defir	ned Values						
H	_							Single	Threshold								
	F	Unk	Unk	Unk	Pos			O Au	to Calculated:	93.83							
(G	Unk	Unk	Unk				🖲 Us	er Defined:	147.3							
	н	Unk	Unk	Unk							OK	Cance	!				

Afbeelding 33. Instellingen van de baseline-drempel

Herhaal de stappen van Afbeelding 31 tot Afbeelding 33 voor het HEX-kanaal en het Texas Red-kanaal. Let er op dat deze stap moet worden uitgevoerd met één kanaal tegelijk geselecteerd

20.3 Resultaten van de ingebouwde analyse exporteren

Selecteer Export (exporteren) > Custom Export (aangepast exporteren) (Afbeelding 34)

Voor resultaten in een bestand met door komma's gescheiden waarden (.csv)

Voor resultaten in een door tabs gescheiden tekstbestand (.txt)

Afbeelding 34. Resultaten exporteren

// D	ata Analy	sis - 2107	14 PF031	Touch2.p	ocrd								_								-	[-	×
File	View	Settings	Ехро	rt Too	ls												Ra P	late	Setup •	-	Flue	oropho	re 🕓	?
	Quantificat	ion 🜈		Export A Export R Custom	II Data Sh DML File Export	leets) n	End	I Point	Alleli	c Discrimir	nation	2	Custom D	ata View	2	QC	e	Run Info	mation	1			
:	2000 +		-				à	2						No	wells des	ignate	ed as S	ample	Type star	ndard.				
_ ·	500						17			~														
<u>۳</u>	1000 1									-														
	500						/																	
	0 <u>†</u>		+ +		+ +		+ +		-															
	0		10		20 Cvcl	es	30		40	o Scale														
			Terres D			10	705			iy Juaie													-	_
			Texas h				/05						_								Step	Number	/	~
	1	2	3	4	5	6	7	8	9	10	11	12		Well 👌	Fluor	Δ 1	Target	0	Content	♦ S	ample	◊ C	q 👌	
A	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	L	B02	FAM			U	nkn				21.55	
	Link	Link	Unk	Link	Link	Link	Link	Link	Unk	Unk	Unk	Link	1	803	FAM			0	nkn				22.08	
	UIK	UIIK		UIIK	UIIK	UIIK	UIK	UIK	UIIK	UIIK	UIK			805	FAM			0	nkn				N/A	
c	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	L	806	FAM			- 0	nkn				N/A	
	Link	Link	Units	Units	Units	1 July	Unit	Link	Units	Link	Link	Link	1	B07	FAM			U	nkn				N/A	
	OIK	OIK	UIK	UIK	UIK	Olik	UIK	UIIK	UIIK	ОПК	Olik	Unk		B08	FAM			U	nkn				N/A	
E	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	L	B09	FAM			U	nkn				N/A	
													1	B10	FAM			U	nkn				N/A	
F	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk		B11	FAM			U	nkn				N/A	
G	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk		B12	FAM			U	nkn				N/A	
														C01	FAM			U	nkn				N/A	
н	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk		C02	FAM			U	nkn				21.20	-
Comp	leted				Scan M	ode: All C	Channels	Plate 1	iype: BR	Clear B	aseline S	etting: B	ase	line Subtra	cted Cun	ve Fit							~ ~	

Selecteer de gewenste exportindeling (bijv. .csv of .txt), kies de velden die u wilt exporteren en klik op **Export** (exporteren) (Afbeelding 35)

Custom Export \times Export Format: CSV (*.csv) ~ Data to Export Include Run Information Header Sample Description Exported Columns
 Sample Description

 Well

 ✓ Ruorophore

 ✓ Target Name

 ✓ Content

 ■ Replicate Number

 ✓ Sample Name

 ■ Biological Group Name

 Well Note
 Well Fluorophore Target Name Content Sample Name Cq Starting Quantity ▼ ▼ Quantification Cq
 Cq
 Starting Quantity
 Cq Mean
 Cq Standard Deviation
 Quantity Standard Deviation Melt Curve Meit Curve
Meit Temperature
Meit Peak Height
Meit Peak Begin Temperature
Meit Peak End Temperature End Point Customize Column Names. End Point Call
 End RFU Set as Default Configuration Export Close

Afbeelding 35. Aangepaste exportinstellingen

20.4 Interpretatie van de resultaten met de PlexPCR SARS-CoV-2 (CFX)-analysesoftware

Gegevensinterpretatie kan worden uitgevoerd met de *PlexPCR*[®] SARS-CoV-2 (CFX)-analysesoftware. De analysesoftware is op aanvraag leverbaar. Neem voor meer informatie contact op via <u>tech@speedx.com.au</u>.

Zie Bijlage A: Interpretatie van de resultaten voor instructies over het gebruik van de *PlexPCR*[®] SARS-CoV-2 (CFX)-analysesoftware.

21 Bijlage A: Interpretatie van de resultaten

Voor interpretatie van de gegevens is de *PlexPCR*[®] SARS-CoV-2-analysesoftware nodig. De SARS-CoV-2-analysesoftware automatiseert de gegevensinterpretatie van de amplificatieresultaten en stroomlijnt de workflow.

Zie voor verdere gedetailleerde aanwijzingen over het **FastFinder**-platform de **FastFinder-gebruiksaanwijzing** toegankelijk in het menu **Help**.

Zie **Tabel 27** voor de juiste analysesoftware voor elk instrument voor realtime PCR. De analysesoftware is op aanvraag leverbaar. Neem voor meer informatie contact op via <u>tech@speedx.com.au</u>.

Tabel 27. PlexPCR [®] SARS-CoV-2-analysesoftware										
Catalogusnr.	Analysesoftware Instrument voor realtime PCR									
99021	PlexPCR [®] SARS-CoV-2 (LC480)	LC480 II								
99022	PlexPCR [®] SARS-CoV-2 (CFX)	CFX96 Dx en CFX96 Touch								

* Raadpleeg de website https://plexpcr.com/products/respiratory-infections/plexpcr-sars-cov-2/ om na te gaan of u de nieuwste versie van de analysesoftware gebruikt.

NB: Voor de overdracht, rapportage en opslag van resultaten moeten standaard laboratoriumpraktijken worden gevolgd om verlies van monsterinformatie te voorkomen.

21.1 FastFinder-platform – Minimale IT-vereisten

De analysesoftware is beschikbaar binnen de FastFinder-platforms (https://www.ugentec.com/fastfinder/analysis). De minimale IT-vereisten voor installatie van het FastFinder-platform worden hieronder opgenoemd.

Hardware-vereisten

PC (Mac-computers worden niet ondersteund) Processor: 2 GHz, 2 GB RAM Schijfruimte: 10 GB Internetverbinding Kabel of DSL, proxy niet ondersteund Min. schermresolutie: 1366 x 768 pixels

Ondersteund klantbesturingssysteem

Besturingssysteem Ondersteunde edities

Windows 10	32-bit en 64-bit
Windows 8.1	32-bit, 64-bit en ARM

Windows 8 32-bit, 64-bit en ARM

Windows 7 SP1 32-bit en 64-bit

Windows Vista SP2 32-bit en 64-bit

Ondersteunde browsers

Gebruikers van FastFinder-beheeraccount moeten voldoen aan een van de volgende:

- Internet Explorer 11 of later
- Microsoft Edge 25 of later
- · Firefox 45 of later
- Google Chrome 47 of later.

Het kan werken op oudere versies, maar die worden niet officieel ondersteund.

Software-vereisten

Om de FastFinder-software te gebruiken, is minimaal .NET 4.6.1 nodig. Zie voor meer informatie over het .NET raamwerk de hulppagina's van Microsoft Windows.

Antivirus-instellingen

Uw antivirus-software kan het FastFinder-installatieprogramma (Ugentec.FastFinder.Installer.exe) in quarantaine plaatsen. Voeg dit bestand toe aan de antivirus-whitelist Voorbeeld: Symantic (Risico: WS.Reputatie.1)

Firewall-vereisten

https-verbindingen moeten worden toegestaan met *.fastfinderplatform.com:443

Zie voor verdere gedetailleerde aanwijzingen over het FastFinder-platform de FastFinder-gebruiksaanwijzing toegankelijk in het Help-menu.

Het Help-menu wordt als volgt geopend:

- Open het startmenu
- Selecteer

of de Helpsectie en selecteer vervolgens Productdocumentatie gevolgd door Gebruiksaanwijzing

NEED HELP? In the help section you can consult the user manual, go to the admin and contact us on	Product documentation	Help centre	Go to admin
Help section	Terms of use	About	Release notes

21.2 Device set up (instellingen apparaat) (nieuwe gebruiker of nieuw apparaat)

Zie de FastFinder Instructions For Use (FastFinder-gebruiksaanwijzing) voor gedetailleerde instructies voor het instellen van het apparaat, toegankelijk via het menu Help

Open FastFinder

- Selecteer **Devices** (apparaten) op de workflowbalk
- > Selecteer Add (toevoegen)
- > Selecteer een bestand (uitvoeringsbestand) voor het nieuwe apparaat
- Wijzigen van de Current directory (huidige directory)
 - > Selecteer **Browse** (bladeren) en selecteer de map met de betreffende bestanden
 - > Selecteer Next (volgende)
- Toevoegen van informatie over het apparaat
 - > Selecteer **Save** (opslaan)

21.2.1 Colour Compensation (Kleurcompensatie)

NB: Zie paragraaf 19.3 voor meer informatie over Colour Compensation (Kleurcompensatie)

Voor LC480 II-apparaten moet aan het apparaat een kleurcompensatiebestand worden toegevoegd

- Selecteer het LC480 II-apparaat
 - > In het gedeelte Colour Compensation (kleurcompensatie) selecteer
 - > Selecteer het kleurcompensatiebestand voor het apparaat in de directory
- Om de Current directory (huidige directory) te wijzigen
 - > Selecteer **Browse** (bladeren) en selecteer de map met de betreffende bestanden

- Selecteer Next (volgende)
- Selecteer PlexPCR SARS-CoV-2 (LC480) in de lijst om een koppeling naar deze assay te maken
- Selecteer Save (opslaan)

Wanneer nodig kunnen nieuwe of aanvullende kleurcompensatiebestanden aan een apparaat worden toegevoegd of worden gedeactiveerd.

In het kleurcompensatiegedeelte van het apparat

Selecteer naast de bestandsnaam

Inactiv

Acti Selecteer om een kleurcompensatiebestand voor een assay te activeren of te deactiveren

Selecteer Save (opslaan)

21.3 Plug-in voor assays (nieuwe gebruiker)

Zie de gebruiksaanwijzing van FastFinder voor gedetailleerde instructies voor het instellen van assays, toegankelijk via het menu Help

Open FastFinder

- Selecteer Assays op de workflowbalk
- Selecteer Add (toevoegen)
 - > Voor LC480 II > Selecteer PlexPCR SARS-CoV-2 (LC480) in de lijst
 - Voor CFX96 Dx en CFX96 Touch > selecteer PlexPCR SARS-CoV-2 (CFX) in de lijst
- Selecteer Add (toevoegen)

Om versies van het plug-in voor assays activeren of deactiveren

- In General assay information (algemene assay-informatie)
- > Selecteer Versions (versies)

Active

- > Selecteer

om de versie van de assay te activeren of deactiveren

> Selecteer Save (opslaan)

21.4 Monsternaamgeving

Er kunnen monsternaamtags worden toegewezen aan een plug-in voor assays ter automatisering van de detectie van wells en monstertypen voor analyse.

Selecteer Assays op de workflowbalk

In het soort monster naamtags (voorvoegsel), selecteer

> Selecteer om een naamtag toe te voegen om het soort monsternaamtag te definiëren (Negative control (negatieve controle), Positive control/s (positieve controle/s) en Regular sample (normaal monster))

- > Voeg het gewenste woord, acroniem of letter toe aan het tekstvak
- > Selecteer Save (opslaan)

- Selecteer in Nametags voor mixdefinitie (achtervoegsel)
 - > Selecteer 🛄 om een nametag toe te voegen om de mixnaam te definiëren
 - > Voeg het gewenste woord, acroniem of letter toe aan het tekstvak
 - > Selecteer Save (opslaan)
- Wijs in de instrumentsoftware (vóór of na voltooiing van de run) dezelfde naamtag toe aan de desbetreffende wells
 - > Voor LC480 II zie paragraaf 19 voor instructies betreffende het programmeren van monsternaamtags in het runbestand
 - > Voor CFX96 Dx en CFX96 Touch zie paragraaf 20 voor instructies betreffende het programmeren van monsternaamtags in het run-bestand

NB: De naamtags van monsters zijn hoofdlettergevoelig. De naamtag moet exact overeenkomen met de toegewezen namen in het run-bestand.

21.5 Mixpartijnummers toevoegen

Er kunnen mixpartijnummers worden toegewezen aan de assay om reagentia traceerbaar te maken

- Selecteer Assays op de workflowbalk
 - > In de Assay Lot (partij): selecteer om een nieuwe partij toe te voegen of selecteer partij te bewerken

om een bestaande

> Eenmaal toegevoegd komen partijnummers beschikbaar in de analysemodule.

Selecteer Show all lots Show only active lots om alle partijnummers of alleen actieve partijnummers weer te geven

21.6 Analyse

Selecteer Analyses op de workflowbalk om met een nieuwe analyse te beginnen

Select datafile

Zoek het bestand dat ter analyse moet worden geüpload op in een bepaalde directory

- om de Current directory (huidige directory) wijzigen
 - > Selecteer Browse (bladeren) en selecteer de map met de betreffende bestanden
- Selecteer het run-bestand (gegevensbestand) uit de lijst
 - > Selecteer Next step (volgende stap)

2 Assign assay(s)

Wijs de assay-informatie handmatig toe aan de plaat als er geen namen van monsters in de Assays-module zijn ingesteld.

- Voor LC48 II > selecteer PlexPCR SARS-CoV-2 (LC480)
- Voor CFX96 Dx en CFX96 Touch > selecteer PlexPCR SARS-CoV-2 (CFX)
- Selecteer wells en wijs ze als volgt toe:
 - > Regulier monster (S)
 - > Negatieve controle (N)
 - > Positieve controle (P)
- Selecteer Next step (volgende stap)

Om de plaatindeling op te slaan als sjabloon voor toekomstig gebruik

- Selecteer wells en wijs monstertypen toe
 - > Selecteer

om het sjabloon op te slaan

- Specificeer sjabloonnaam voor toekomstig gebruik

B

> Selecteer Save (opslaan)

Om een eerder opgeslagen plaatsjabloon laden

↑

- Selecteer

om het plaatsjabloon te laden

- > Selecteer de sjabloon in het vervolgkeuzemenu
- > Schakel het vakje in om in de plaatsjabloon gespecificeerde monstertypen te laden
- > Selecteer Load (laden)

3 Configure assay(s)

- Voor LC480 II > selecteer PlexPCR SARS-CoV-2 (LC480)
 - > Selecteer Assay Lot (partij) in het vervolgkeuzemenu
 - > Selecteer Analyse (analyseren)
- Voor CFX96 Dx en CFX96 Touch > selecteer PlexPCR SARS-CoV-2 (CFX)
 - > Selecteer Assay Lot (partij) in het vervolgkeuzemenu
 - > Selecteer Analyse (analyseren)

21.7 Resultaten

Zie Tabel 28 voor een overzicht van mogelijke gerapporteerde monsterresultaten.

NB: Het wordt ten sterkste aanbevolen om amplificatiecurven te bevestigen voor alle positieve monsters.

Om de analyse af te ronden en verdere bewerkingen door de gebruiker te voorkomen

- > Selecteer Authorise Analysis (analyse autoriseren)
- > Selecteer Yes (ja) om te bevestigen
- Om de analyse af te wijzen of opnieuw te starten
 - > Selecteer Restart Analysis (analyse opnieuw opstarten) of Reject Analysis (analyse afwijzen)
 - > Selecteer een optie om te bevestigen

21.8 Referentiecurve

Een referentiecurve kan worden opgeslagen en gebruikt ter vergelijking van monsters op dezelfde plaat of op verschillende platen

- Selecteer het gewenste monster in het menu Well Details (Well-details) of Target Details (doeldetails)
- In het amplificatiegrafiekmenu > selecteer
 - > Schakel het selectievakje voor het betreffende kanaal in en voeg een label toe
 - > Selecteer **Save** (opslaan) om het signaal toe te voegen als een referentiecurve

Deze referentiecurve wordt nu in het Assays-menu gekoppeld aan de assay weergegeven en kan op elk gewenst moment worden gedeactiveerd.

21.9 Overzicht van de resultaten

Tabel 2	8. Resultaatinterpre	etatie van de <i>PlexPCR</i> ® S	ARS-CoV-2	-analysesoftware ((tabblad Resultatenoverzicht)
Well	Naam	Assay	Resultaa t	Cq-waarden	Algehele resultaten
A1	Monster 1_CoV	PlexPCR SARS-CoV-2	Positief	RdRp: 25,94 IC: 19,17	Monster 1 – Positief SARS-CoV-2 gedetecteerd.
A2	Monster 2_CoV	PlexPCR SARS-CoV-2	Negatief	IC: 18,82	Monster 2 – Negatief SARS-CoV-2 niet gedetecteerd. IC geldig
A3	N_CoV	PlexPCR SARS-CoV-2	Negatief	IC: 18,63	N – Negatief Negatieve controle geldig.
A4	Monster 3_CoV	PlexPCR SARS-CoV-2	Ongeldig		Monster 3 – Ongeldig IC ongeldig. Monster opnieuw extraheren en opnieuw testen.
A5	Monster 4_CoV	PlexPCR SARS-CoV-2	Positief	ORF1ab: 22,75 RdRp: 23,48 IC: 18,79	Monster 4 – Positief SARS-CoV-2 gedetecteerd.
A6	Monster 5_CoV	PlexPCR SARS-CoV-2	Positief	ORF1ab: 22,75 RdRp: 23,48 IC: 18,79	Monster 5 – Positief SARS-CoV-2 gedetecteerd.
A7	N_CoV	PlexPCR SARS-CoV-2	Ongeldig		N – Ongeldig Negatieve controle ongeldig.
A8	Monster 6_CoV	PlexPCR SARS-CoV-2	Positief	ORF1ab: 23,08 RdRp: 24,34 IC: 19,42	Monster 6 – Positief SARS-CoV-2 gedetecteerd.
A9	P_CoV	PlexPCR SARS-CoV-2	Positief	ORF1ab: 18,98 RdRp: 19,97 IC: 18,39	P – Positief Positieve controle geldig.
A10	P_CoV	PlexPCR SARS-CoV-2	Ongeldig		P – Ongeldig Positieve controle ongeldig.
A11	Monster 7_CoV	PlexPCR SARS-CoV-2	Ongeldig	IC: 18,83	Monster 7_CoV – Ongeldig Fout: abnormale wijziging in het fluorescentieniveau.
A12	Monster 8_CoV	PlexPCR SARS-CoV-2	Ongeldig		Monster 8_CoV – Ongeldig Monster is afgewezen

21.10 Resultaten exporteren

- Exporteren van resultaten
 - > Selecteer **Exports** (exporten) op de workflowbalk
 - Exporteer een of meer van de volgende soorten rapporten: Cq values list (Cq-waardenlijst) (CSV), Results (resultaten) (CSV), Generic Amplification CSV (generieke amplificatie CSV) of het juiste LIS-integratiebestand.
 - > Selecteer Exports (exporten)
- Downloaden van exporten
 - > Selecteer Reports (rapporten) op de workflowbalk
 - > Selecteer bestanden en sla op
- U kunt in plaats hiervan ook een aangepast rapport exporteren
 - > Exporteer Amplification Curve Analysis (PDF) (amplificatiecurveanalyse [PDF])
 - > Selecteer de informatie die u in het rapport wilt opnemen (grafieken, audit-trail, resultatenoverzicht)
 - > Selecteer de gewenste rapportinstellingen om de monstervolgorde aan te passen
- Selecteer **Exports** (exporten)
 - > Open het rapport in **Report Viewer** (rapportviewer) voor weergave, opslaan en afdrukken

22 Woordenlijst

Europese conformiteit Voor *in-vitro* diagnostiek

Geautoriseerde vertegenwoordiger

In de Europese Gemeenschap

Catalogusnummer

Batchcode

Fabrikant

Aanmaakdatum

Temperatuurbeperking

Europese importeur

Bevat voldoende voor xxx bepalingen

Verenigd Koninkrijk Markering voor conformiteitsbepaling

Uiterste gebruiksdatum

SpeeDx-producten worden mogelijk beschermd door één of meer plaatselijke of buitenlandse octrooien. Zie <u>www.plexpcr.com/patents</u> voor gedetailleerde informatie over het octrooi.

De handelsmerken *PlexPCR[®]*, *PlexZyme[®]* en *PlexPrep[™]* zijn eigendom van SpeeDx. Overige auteursrechten en handelsmerken zijn het eigendom van de respectieve rechthebbende.

© Copyright 2023 SpeeDx Pty. Ltd.