

ResistancePlus® MG

Multiplex realtids-PCR för identifiering av Mycoplasma genitalium och detektion av mutationer som förknippas med resistens mot azitromycin

CE0123 IVD Produkt	UK CA	Plattform		Storlek	Katalog	ınr.
			(1	reaktioner)		
ResistancePlus [®] MG		LC480 II z 480		100	REF	20001L-01
<i>ResistancePlus</i> [®] MG		LC480 II z 480		25	REF	2000125
ResistancePlus® MG	550)	ABI 7500 Fast ABI 7500 Fast Dx		100	REF	2000201
ResistancePlus® MG(550)	ABI 7500 Fast ABI 7500 Fast Dx		25	REF	2000225
ResistancePlus® MG(675)	CFX96™ Dx CFX96™ Touch		100	REF	2000301
<i>ResistancePlus</i> ® MG ₍	675)	CFX96™ Dx CFX96™ Touch		25	REF	2000325
Tillbehör – analyspro	ogramvara					
ResistancePlus [®] MG	(LC480)				REF	99003 99018
ResistancePlus [®] MG	(7500)				REF	99002
ResistancePlus® MG	(CFX)				REF	99008
REFLEX Resistance	Plus® MG (LC480)				REF	99023
REFLEX ResistancePlus® MG (z480)					REF	99024
REFLEX Resistance	Plus [®] MG (7500)				REF	99026
REFLEX Resistance	Plus [®] MG (CFX)				REF	99025
EC REP	MedEnvoy Prinses Margrietplants 2595 AM Haag Nederländerna	oen 33 – Svit 123		SpeeDx Pty Suite 102, Na Cornwallis St NSW 2015, A	Ltd ational Innova treet, Eveleig Australien	ation Centre h

Tel: +61 2 9209 4170, E-post: tech@speedx.com.au

ENDAST FÖR PROFESSIONELLT BRUK Får inte säljas i USA

Innehållsförteckning

1	Produ	ıktbeskrivning	5
2	Avse	dd användning	5
3	Patog	jeninformation	5
4	Kittet	s innehåll	6
5 6	Varni	ans och försiktighetsåtgärder	/
6	1 vann		7
6.	2	Laboratorium	7
6.	3	Provhantering	7
6.	4	Analys	9
6.	5	Säkerhetsåtaärder	8
6.	6	Varningar och försiktighetsåtgärder för analys-plugin	8
7	Frfor	terligt material som ei medfölier	0
8	Princ	p för tekniken	11
9	Proce	edursöversikt	13
10	Detal	jerad procedur	14
10).1	Insamling, transport och förvaring av prover	14
	10.1.1	Godkända provinsamlingsenheter	14
	10.1.2	Insamling, transport och förvaring av outspädd urin	14
	10.1.3	Insamling, transport och förvaring av torra provtagningspinnar	14
	10.1.4	Insamling, transport och förvaring av Multi-Collect provtagningskit (Abbott, kat.nr 9K12-01)	14
	10.1.5	Insamling, transport och förvaring av Aptima [®] urinprovtagningskit (Hologic, kat.nr 301040)	15
	10.1.6	Insamling, transport och förvaring av Aptima [®] Unisex provtagningskit (Hologic, kat.nr 301041)	15
	10.1.7	Insamling, transport och förvaring av ViCUM [®] 2 mL + Standard flockad provtagningspinne (deltalab, kat.nr 30- 16	4278)
	10.1.8	Insamling, transport och förvaring av Vacumed [®] Urin utan konserveringsmedel (FL medical, kat.nr 44950)	16
	10.1.9	Insamling, transport och förvaring av Standard FLOQSwab™ i 1 mL UTM™-medium (Copan, kat.nr 359C)	16
	10.1.10	Insamling, transport och förvaring av cobas [®] PCR-medium (Roche, kat.nr 06466281190)	16
	10.1.11	Godkända provextrakt	17
10	.2	Provbehandling	17
10	.3	Internal Control (IC) (Intern kontroll (IC))	17
	10.3.1	Intern kontroll på MagNA Pure 96	17
	10.3.2	Internal Control (Intern kontroll) på MICROLAB STARlet IVD	18
	10.3.3	Internal Control (Intern kontroll) på QIAsymphony [®] SP	18
	10.3.4	Internal Control (Intern kontroll) på easyMAG [®]	19
10	.4	Förberedelse av realtids-PCR	20
	10.4.1	Masterblandningens förberedelse	20
	10.4.2	Masterblandningens stabilitet	20
10	0.5	Förberedelse av PCR med extraherade nukleinsyror (reflexarbetsflöde)	20
11	Progr	ammering och analys	21
12	Tolkn	ing av resultat	21
13	Begrä	ansningar	22
14	Kvalit	etskontroll	22

15	Instru	Iktioner för ResistancePlus [®] MG Positive Control	
15	.1	Bruksanvisning	23
16	Prest	andaegenskaper	24
16	.1	Klinisk prestanda	
	16.1.1	Klinisk studie 1	24
	16.1.2	Klinisk studie 2	
	16.1.3	Klinisk studie 3	
	16.1.4	Klinisk studie 4	
	16.1.5	Klinisk studie 5	29
	16.1.6	Klinisk studie 6	30
	16.1.7	Klinisk studie 7	32
16	.2	Analytisk prestanda	33
	16.2.1	Reproducerbarhet och repeterbarhet	33
	16.2.2	Analytisk sensitivitet	36
	16.2.3	Analytisk specificitet	36
	16.2.4	Potentiellt interferande substanser	37
17	Kund	tjänst och teknisk service	39
18	Refe	enser	40
19	Bilag	a 1: LightCycler [®] 480 Instrument II	41
19	.1	Programmera LightCycler [®] 480 Instrument II (LC480 II)	41
19	.2	Colour Compensation (Färgkompensation) för LightCycler® 480 Instrument II	45
19	.3	Tolkning av resultat	46
20	Bilag	a 2: cobas z 480 analyser	47
20	.1	Programmering av cobas z 480 analyzer	47
20	.2	Färgkompensation för cobas z 480 analyser	51
20	.3	Tolkning av resultat	
21	Bilag	a 3: Applied Biosystems® 7500 Fast	53
21	.1	Programmering av Applied Biosystems® 7500 Fast	53
21	.2	Tolkning av resultat	
22	Bilag	a 4: Applied Biosystems 7500 Fast Dx	57
22	.1	Programmering av Applied Biosystems [®] 7500 Fast Dx	
22	.2		
23	Bilag	a 5: Bio-Rad CFX96 T Dx och CFX96 Touch T Real-Time PCR System	
23	.1	Programming the CFX96 IM Dx och CFX96 Touch IM Real-time PCR System	
23	.2		
24	Bilaga	a A. Tolkhing av resultat.	
24	.1	FastFinder-platform – Minimikrav för II	
24	.2	Device set up (Ennetskonfiguration) (ny anvandare eller ennet)	
	24.2.1	Colour Compensation (Fargkompensation)	
24	.3	Analysinsticksmodul (ny anvandare)	
24	.4	Namngivning av prover	
24	.5	Lägga till blandningens satsnummer	68
24	.6	Analys	68

2	4.7	Resultat	70
2	4.8	Referenskurva	71
2	4.9	Resultatöversikt	72
2	4.10	Exportera resultat	72
2	4.11	Exempeldiagram över kontroll	73
	24.11.1	<i>M. genitalium</i> , 23S rRNA-mutantkontroll (Pa)	73
	24.11.2	M. genitalium, 23S rRNA vildtypkontroll (Pb)	73
	24.11.3	M. genitalium negativ kontroll (N) (negativt prov)	74
2	4.12	Exempel	74
	24.12.1	Exempel 1. Hög kopia <i>M. genitalium</i> , 23S rRNA vildtypsprov	74
	24.12.2	Exempel 2. Låg kopia <i>M. genitalium</i> , 23S rRNA vildtypsprov	75
	24.12.3	Exempel 3. Hög kopia <i>M. genitalium</i> , 23S rRNA-mutantprov	75
	24.12.4	Exempel 4. Låg kopia <i>M. genitalium</i> , 23S rRNA-mutantprov	75
	24.12.5	5 Exempel 5. Negativt prov	76
	24.12.6	Exempel 6. Ogiltigt prov	76
	24.12.7	Z Exempel 7. Prov som ska lösas – negativ signal	76
	24.12.8	Exempel 8. Prover som ska lösas – obedömbar signal	78
25	Ordlis	ta	79

1 Produktbeskrivning

ResistancePlus[®] MG-kittet detekterar samtidigt *M. genitalium* och 5 mutationer vid positionema 2058 och 2059 i 23S rRNA-genen (*E. coli*-numrering) som förknippas med resistens mot azitromycin (makrolidantibiotika). **Resistance**Plus[®] MG-kittet är ett multiplex realtids-PCR för 1 brunn som består av 3 avläsningar. Avläsning 1 indikerar närvaron eller frånvaron av *M. genitalium* genom detektion av MgPa-genen. Avläsning 2 indikerar närvaro av en A2058G-, A2059G-, A2058T-, A2058C- eller A2059C-mutation i 23S rRNA-genen. Avläsning 3 är en intern kontroll för att övervaka extraktionseffektivitet och qPCR-hämning. **Resistance**Plus[®] MG-kittet använder **Plex***Zyme*[®] och **Plex***Prime*[®] för specificitet och överlägsen multiplexförmåga. Analysen har validerats med prover som extraherats med hjälp av MagNA Pure 96 System (Roche), MICROLAB STARlet IVD (Hamilton), QIAsymphony[®] SP (QIAGEN), NUCLISENS[®] easyMAG[®] (Biomérieux) och realtidsdetektion på Roche LightCycler[®] 480 Instrument II (LC480 II), cobas z 480 analyser (z480), the Applied Biosystems[®] 7500 Fast (7500 Fast), Applied Biosystems[®] 7500 Fast Dx) and the Bio-Rad CFX96TM Dx (CFX96 Dx) och CFX96 Touch) Real-time PCR Detection Systems.

2 Avsedd användning

Resistance*Plus*[®] MG-kittet är ett kvalitativt multiplexat *in vitro*-diagnostiskt realtids-PCR-test för identifiering av *M. genitalium* och detektion av 5 mutationer i 23S rRNA-genen (A2058G, A2059G, A2058T, A2058C, and A2059C, *Escherichia coli*-numrering) som förknippas med resistens mot azitromycin (makrolidantibiotika). Det är avsett att hjälpa till vid diagnosen av *M. genitalium* och detekterar mutationer som förknippas med resistens mot azitromycin i *M. genitalium* och bör användas tillsammans med klinisk information och annan laboratorieinformation.

ResistancePlus[®] MG-kittet kan användas med följande provtyper: urin (män och kvinnor) och svabbar tagna från anal, rektum, cervix, endocervix, vagina, uretra och svalg, från symptomatiska och asymptomatiska patienter.

Negativa resultat utesluter inte *M. genitalium*-infektioner och ger ingen bekräftelse på känsligheten mot azitromycin, eftersom det kan finnas andra orsaker till behandlingssvikt.

ResistancePlus[®] MG-kittet är avsett för användning i professionella miljöer som sjukhus eller referens- eller statliga laboratorier. Det är inte avsett för självtestning, hemmabruk eller patientnära analyser.

3 Patogeninformation

M. genitalium är en liten bakterie som kan finnas i människans urogenitala system. *M. genitalium* har förknippats med flera olika sexuellt överförda infektioner (STI). Hos män är det den andra vanligaste orsaken till icke-gonokockuretrit (NGU) och förknippas även med prostatit, epididymit och balanopostit, inflammation av slemhinnan på glans penis och preputium¹. Hos kvinnor förknippas den med cervicit, adnexit (PID), inklusive endometrit (inflammation i livmoderns slemhinna) och salpingit (äggledarinflammation)^{1.2.3}.

Azitromycin används ofta för behandling av *M. genitalium* och för syndromhantering av sexuellt överförbara infektioner som NGU och cervicit. Azitromycin tillhör gruppen makrolidantibiotika och fungerar genom att binda till 23S rRNA för att inhibera proteinsyntes. Punktmutationer i 23S rRNA-genen för *M. genitalium*, A2058G, A2059G, A2058T, A2058C och A2059C (*E. coli*-numrering) har förknippats med behandlingssvikt och/eller *in vitro*-resistens mot azitromycin^{4.5}. De vanligaste mutationerna är A2058G och A2059G, som bidrar till 89 % av de makrolida resistensmutationerna enligt en ny studie⁶.

4 Kittets innehåll

Tabell 1. Innehåll i <i>ResistancePlus[®]</i> MG-kit						
Lockets färg	kets färg Innehållsförteckning Beskrivning		Kat.nr 20001L-01 (100 reaktioner)	Kat.nr 2000125 (25 reaktioner)		
Blå	Plex Mastermix (Plex masterblandning), 2x	Masterblandning som innehåller komponenter som behövs för realtids-PCR, inklusive dNTP:er, MgCl ₂ , DNA-polymeras och bufferlösning	1 x 1 mL	1 x 250 µL		
Brun	MG+23S Mix (MG+23S-blandning), 20x	Blandning som innehåller oligonukleotider ^A för amplifikation och detektion av <i>M. genitalium</i> och 23S rRNA-mutationer	1 x 100 µL	1 x 25 µL		
Vit	Control Mix 1 (Kontrollblandning 1), 20x	Blandning som innehåller oligonukleotider^ för amplifiering och detektion av intern kontrollanalys för LC480 II och z 480	1 x 100 µL	1 x 25 µL		
Röd	Internal Control Cells (Interna kontrollceller) [#]	Interna kontrollceller som innehåller intern DNA-mallkontroll för att kontrollera extraktions- och amplifieringseffektivitet	1 x 500 µL	1 x 100 µL		
Neutral	Nuclease Free Water (Nukleasfritt vatten)	Vatten av PCR-kvalitet	1 x 1 mL	1 x 1 mL		

Förvara mallrören separat från oligoblandningar, dvs. i ett rum för hantering av mallar eller nukleinsyra

^ Oligonukleotider är PCR-primerpar (omfattande *PlexPrime®-primers)*, *PlexZyme®-enzymer* och fluorescerande sond

Tabell 2. Innehåll i <i>ResistancePlus[®]</i> MG ₍₅₅₀₎ -kit						
Lockets färg	ts färg Innehållsförteckning Beskrivning		Kat.nr 2000201 (100 reaktioner)	Kat.nr 2000225 (25 reaktioner)		
Blå	Plex Mastermix (Plex masterblandning), 2x	Masterblandning som innehåller komponenter som behövs för realtids-PCR, inklusive dNTP:er, MgCl ₂ , DNA-polymeras och bufferlösning	1 x 1 mL	1 x 250 µL		
Brun	MG+23S Mix (MG+23S-blandning), 20x	Blandning som innehåller oligonukleotider ^A för amplifikation och detektion av <i>M. genitalium</i> och 23S rRNA-mutationer	1 x 100 µL	1 x 25 µL		
Vit	Control Mix 2 (Kontrollblandning 2), 20x	Blandning som innehåller oligonukleotider^ för amplifiering och detektion av intern kontrollanalys för 7500 Fast och 7500 Fast Dx	1 x 100 µL	1 x 25 µL		
Röd	Internal Control Cells (Interna kontrollceller) [#]	Interna kontrollceller som innehåller intern DNA-mallkontroll för att kontrollera extraktions- och amplifieringseffektivitet	1 x 500 µL	1 x 100 µL		
Neutral	Nuclease Free Water (Nukleasfritt vatten)	Vatten av PCR-kvalitet	1 x 1 mL	1 x 1 mL		

Förvara mallrören separat från oligoblandningar, dvs. i ett rum för hantering av mallar eller nukleinsyra

^ Oligonukleotider är PCR-primerpar (omfattande PlexPrime®-primers), PlexZyme®-enzymer och fluorescerande sond

Tabell 3. Innehåll i <i>ResistancePlus[®]</i> MG ₍₆₇₅₎ -kit							
Lockets färg	Innehållsförteckning	Beskrivning	Kat.nr 2000301 (100 reaktioner)	Kat.nr 2000325 (25 reaktioner)			
Blå	Plex Mastermix (Plex masterblandning), 2x	Masterblandning som innehåller komponenter som behövs för realtids-PCR, inklusive dNTP:er, MgCl ₂ , DNA-polymeras och bufferlösning	1 x 1 mL	1 x 250 µL			
Brun	MG+23S Mix (MG+23S-blandning), 20x	Blandning som innehåller oligonukleotider ^A för amplifikation och detektion av <i>M. genitalium</i> och 23S rRNA-mutationer	1 x 100 µL	1 x 25 µL			
Vit	Control Mix 3 (Kontrollblandning 3), 20x	Blandning som innehåller oligonukleotider^ för amplifiering och detektion av intern kontrollanalys för CFX96 Dx och CFX96 Touch	1 x 100 µL	1 x 25 μL			
Röd	Internal Control Cells (Interna kontrollceller)#	Interna kontrollceller som innehåller intern DNA-mallkontroll för att kontrollera extraktions- och amplifieringseffektivitet	1 x 500 µL	1 x 100 µL			
Neutral	Nuclease Free Water (Nukleasfritt vatten)	Vatten av PCR-kvalitet	1 x 1 mL	1 x 1 mL			

Förvara mallrören separat från oligoblandningar, dvs. i ett rum för hantering av mallar eller nukleinsyra

^ Oligonukleotider är PCR-primerpar (omfattande *PlexPrime®*-primers), *PlexZyme®*-enzymer och fluorescerande sond

5 Leverans och förvaring

- Komponenterna i ResistancePlus[®] MG-kitten levereras på torris eller kylpåsar. Samtliga komponenter ska förvaras vid -25 °C till -15 °C efter mottagandet. Frys- och tiningscykler rekommenderas att begränsas till 15.
- När de förvaras under de rekommenderade förhållandena och hanteras korrekt bevaras kittets aktivitet till och med utgångsdatumet som finns på etiketten. Får inte användas efter utgångsdatumet.
- Allvarliga incidenter ska rapporteras till SpeeDx genom att kontakta tech@speedx.com.au

6 Varningar och försiktighetsåtgärder

6.1 Allmänt

- Endast för in vitro-diagnostisk användning.
- Läs denna bruksanvisning noggrant före användning. Följ procedurerna så som de beskrivs för att säkerställa testresultatens tillförlitlighet. Avvikelser från dessa procedurer kan påverka testprestandan.
- Användare bör vara tillräckligt utbildade i användningen av **Resistance**Plus[®] MG-analysen.
- Allvarliga incidenter ska rapporteras till tillverkaren och behörig myndighet i användarens och/eller patientens medlemsstat.

6.2 Laboratorium

- Det rekommenderas att utföra provförberedning/-extraktion, beredning av masterblandning, provtillsats och termocykling i avskilda utrymmen i rummet. PCR-instrumentet bör som ett minimum placeras i ett separat rum till områdena där reaktionerna genomförs.
- Det rekommenderas att rutinmässiga laboratorieförsiktighetsåtgärder följs. Bär lämplig personlig skyddsutrustning t.ex. handskar, skyddsglasögon och laboratorierock vid hanteringen av reagenser.
- Patogena organismer kan förekomma i kliniska prover. Behandla alla biologiska prover som potentiellt infektiösa och följ institutionens säkerhetsprocedurer för hantering av kemikalier och biologiska prover.
- Följ institutionens procedurer för bortskaffande av farligt avfall för korrekt bortskaffande av prover, reagenser och andra potentiell kontaminerade material.

6.3 Provhantering

- Prover bör samlas in, transporteras och förvaras enligt standardlaboratorietekniker eller enligt insamlingskittets instruktioner.

6.4 Analys

- Grundläggande försiktighetsåtgärder för att förhindra kontaminering av PCR-reaktioner omfattar användningen av sterila filterpipettspetsar, användningen av en ny pipettspets vid varje pipetteringsåtgärd och separering av arbetsflöde.
- PCR-tester är benägna att kontamineras från tidigare PCR-produkter. Öppna aldrig reaktionskärlen efter avslutad PCR.
- Analysreagenserna innehåller IDTE-buffert som kan orsaka allvarlig ögonirritation. Användning av ett väl ventilerat område och lämplig personlig skyddsutrustning såsom handskar, skyddsglasögon samt laboratorierock rekommenderas vid hantering av reagens.

6.5 Säkerhetsåtgärder

- Säkerhetsdatablad finns tillgängliga på begäran. Kontakta tech@speedx.com.au för mer information.

6.6 Varningar och försiktighetsåtgärder för analys-plugin

- SpeeDx-programvara kan endast styra rådataanalysen som testkittet genererar när det används med dess respektive PCRinstrument. Den styr inte provförberedelser, reaktioner, utrustningsprogrammering eller tillhandahållande av behandling.
- Användare ska få adekvat utbildning i *ResistancePlus*® MG-analysprogramvara och åtkomst ska begränsas till varje enskild tilldelad användare.
- Det rekommenderas att användarautentisering och cybersäkerhetskontroller såsom ett antivirusprogram och en brandvägg installeras på IT-system och infrastruktur där programmet används.
- Om du upptäcker en cybersäkerhetsincident såsom obehörig åtkomst eller angrepp med ett utpressningsvirus, kontakta tech@speedx.com.au för ytterligare support.

7 Erforderligt material som ej medföljer

Positivt kontrollmaterial

- ResistancePlus® MG Positive Control -kit (SpeeDx, kat.nr 95001)

Allmänna förbrukningsartiklar till laboratoriet

- Handskar och rena laboratorierockar
- Vortexblandare
- Bänkcentrifug för 0,5 mL och 1,5 mL rör
- Mikropipetter
- Sterila aerosolresistenta pipettspetsar
- 0,5 mL behållare och 1,5 mL behållare (PCR-kvalitet)
- 2,0 mL rör (för förspädning av interna kontrollceller)

För MagNA Pure 96 Instrument

- 1x Phosphate Buffered Saline (PBS) (Fosfatbuffrad koksaltlösning (PBS))
- MagNA Pure 96 Internal Control Tube (Roche, kat.nr 06374905001)
- MagNA Pure 96 DNA and Viral NA Small Volume Kit (Roche, kat.nr 06543588001)
- MagNA Pure 96 DNA och Viral NA Large Volume Kit (Roche, kat.nr 06374891001)
- MagNA Pure 96 System Fluid (externt) (Roche, kat.nr 06640729001)
- MagNA Pure 96 Processing Cartridge (Roche, kat.nr 06241603001)
- MagNA Pure 96 Pure tip 1000uL (Roche, kat.nr 6241620001)
- MagNA Pure 96 Output Plate (Roche, kat.nr 06241611001)
- MagNA Pure Sealing Foil (Roche, kat.nr 06241638001)

För MICROLAB STARlet Instrument

- 1x Phosphate Buffered Saline (PBS) (Fosfatbuffrad koksaltlösning (PBS))
- STARMag 96 X 4 Universal Cartridge kit (384T) kit (Seegene, kat.nr 744300.4.UC384)
- 2,0 mL-behållare

För QIAsymphony® SP-instrument

- 1x Phosphate Buffered Saline (PBS) (Fosfatbuffrad koksaltlösning (PBS))
- Sample Prep Cartridges, 8-well (Qiagen, kat.nr 997002)
- 8-Rod Covers (Qiagen, kat.nr 997004)
- Filter tips, 200 µL and 1500 µL (Qiagen, kat.nr 990332 and 997024)
- 2 mL tubes (Sarstedt, kat.nr 72.639 eller 72.694)
- 14 mL polystyrene tubes (Corning, kat.nr 352051)
- DSP Virus/Pathogen Mini Kit (QIAGEN, kat.nr. 937036)

För NucliSENS® easyMAG®-instrument

- 1x Phosphate Buffered Saline (PBS) (Fosfatbuffrad koksaltlösning (PBS))
- NucliSENS[®] easyMAG[®] Lysis Buffer 4X1L (Biomerieux, kat.nr 280134)
- NucliSENS® easyMAG® Lysis Buffer 2ML 48T (Biomerieux, kat.nr 200292)
- NucliSENS® easyMAG® Magnetic Silica (Biomerieux, kat.nr 280133)
- NucliSENS® easyMAG® Extraction buffer 1 (Biomerieux, kat.nr 280130)
- NucliSENS® easyMAG® Extraction buffer 2 (Biomerieux, kat.nr 280131)
- NucliSENS[®] easyMAG[®] Extraction buffer 3 (Biomerieux, kat.nr 280132)
- NucliSENS® easyMAG® Disposables (Biomerieux, kat.nr 280135)

För LightCycler[®] 480 Instrument II och cobas z 480 analyser

- PlexPCR[®] Colour Compensation-kit (CC) (SpeeDx, kat.nr 90001)
- LightCycler® 480 Multiwell Plate 96 (Roche, kat.nr 04729692001)
- LightCycler[®] 480 Sealing Foil (Roche, kat.nr 04729757001)

För Applied Biosystems® 7500 Fast och 7500 Fast Dx

- MicroAmp® Optical 96-well reaction plates (ThermoFisher Scientific, kat.nr 4316813)
- MicroAmp[®] Optical Adhesive Film (ThermoFisher Scientific, kat.nr 4360954)

För Bio-Rad CFX96™ Dx och CFX96 Touch™ Real-time PCR Detection System

- Multiplate[™] 96-well PCR plates (Bio-Rad, kat.nr MLP9601)
- Microseal[®] 'B' PCR Plate Sealing Film, adhesive, optical (Bio-Rad, kat.nr MSB1001)

Provinsamlingsenheter

- Multi-Collect provtagningskit (Abbott, kat.nr 9K12-01)
- Aptima[®] urinprovtagningskit (Hologic, kat.nr 301040)
- Aptima[®] unisex provtagningskit (Hologic, kat.nr 301041)
- DeltaSwab ViCUM[®] 2 mL + Standard flockad provtagningspinne (deltalab, kat.nr 304278)

- Vacumed[®] Urin utan konserveringsmedel (FL medical, kat.nr 44950)
- Standard FLOQSwab™ i 1 mL UTM™-medium (Copan, kat.nr 359C)
- cobas[®] PCR-medium (Roche, kat.nr 06466281190)

8 Princip för tekniken

Realtids-PCR (qPCR) kan användas för att amplifiera och detektera specifika målnukleinsyror från patogener. *PlexPCR*[®] är en qPCRteknik som med hjälp av *PlexZyme*[®]-enzymer detekterar och rapporterar den amplifierade produkten genom generering av en fluorescerande signal (**Figur 1**). *PlexPrime*[®]-primers för specifik amplifiering av mutantsekvenser som är sammankopplade med mutantspecifik *PlexZyme*[®]-detektion (**Figur 2**).

PlexZyme[®]-enzymer är katalytiska DNA-komplex bestående av två DNA-oligos som kallas partiella enzymer. Varje partiellt enzym har ett målspecifikt område, en katalytisk kärna och ett universellt probbindande område. De två partiella enzymerna binder intill varandra när målprodukten är närvarande och formar då det aktiva *PlexZyme*[®] som har katalytisk aktivitet för att klyva en märkt prob. Klyvningen separerar fluoroforen och quencherfärgämnena, och ger en fluorescerande signal som kan kontrolleras i realtid. *PlexZyme*[®]-enzymer har ytterligare specificitet jämfört med alternativa detektionstekniker, eftersom bindning av två partiella enzymer krävs för detektion. *PlexZyme*[®]-enzymer är också enzymer med multipel omsättning, och multipla prober kan klyvas under varje PCR-cykel, vilket resulterar i en stark och känslig signal. *PlexZyme*[®]-analyser är högeligen sensitiva och specifika, och är idealt lämpade för multiplexdetektion av patogener.

PlexPrime®-primrar har tre funktionsområden. Det långa 5'-området ankrar fast primern på en specifik plats och det korta 3'-området väljer selektivt elongering från den muterade basen. En infogningssekvens ligger mellan 5'- och 3'-områdena och fungerar som en brostruktur som infogar måloberoende sekvens i den resulterande amplikonen och ökar det valda trycket i 3'-området. I multiplex är varje *PlexPrime®*-primer utformad för att rikta in sig på en specifik mutantbas och inkorporerar en unik infogningssekvens, vilket gör att distinkta mutantamplikonsekvenser skapas. Till skillnad från andra probbaserade detektionstekniker kan *PlexZyme®*-enzymet överlappas med *PlexPrime®*-primer nör att rikta in sig på den specifika mutantamplikonen som innehåller mutantbasen och inkorporerad infogningssekvens. Den unika kombinationen av *PlexPrime®*-primar kopplade till *PlexZyme®*-enzymer möjliggör specifik detektion i multiplex.

Figur 1. Schematisk presentation av *PlexZyme*®-detektion och universell signalering

Figur 2. Schematisk representation av *PlexPrime®*-primern kopplad med *PlexZyme®*-detektion. *PlexPrime®*-primern amplifierar mutantsekvensen och *PlexZyme®*-enzymer detekterar amplikonen.

PlexPrime amplicon

Bruksanvisning

9 Procedursöversikt

10 Detaljerad procedur

Obs! Medföljande reagensers namn står skrivna med kursiv text och färgen på behållarens lock står angiven inom parentes.

10.1 Insamling, transport och förvaring av prover

Svabbar från urin, uretra, anal, rektum och svalg från män och kvinnor, svabbar från penis, uretra, cervix, endocervix och vagina, från symptomatiska eller asymptomatiska partners ska samlas in, transporteras och förvaras enligt standardiserade laboratorietekniker eller enligt provtagningskittets anvisningar.

10.1.1 <u>Godkända provinsamlingsenheter</u>

Otillräcklig eller felaktig provinsamling, förvaring och transport kan ge falska testresultat. Korrekt utbildning inom provinsamling rekommenderas för att säkerställa provämnets kvalitet och stabilitet.

Provinsamlingsenheter som har godkänts med **Resistance**Plus[®] MG-kitten inkluderas nedan med en kort vägledning med instruktioner från enhetens tillverkare gällande insamling, hantering och transport. Dessa instruktioner är inte avsedda att ersätta eller åsidosätta instruktioner som tillhandahållits av tillverkaren. Se alltid instruktionerna från provinsamlingsenhetens tillverkare för korrekta insamlingsmetoder.

Utbildad personal måste säkerställa korrekt förståelse för enheten och metoden innan provinsamlingsmetoden utförs. Granska åtminstone testbeskrivningen för följande: indikation för provtyp, tillräcklig mängd, förfarande(n), nödvändiga insamlingsmaterial, patientförberedelse och anvisningar för korrekt hantering och lagring.

10.1.2 Insamling, transport och förvaring av outspädd urin

- 1. Användning av en klar, transparent urininsamlingsbehållare fri från konserveringsmedel eller transportmedium rekommenderas för självinsamlade prover.
- 2. Patienten ska samla in 20–50 mL av första portionen av urin och försegla behållaren noga.
- 3. Dubbla påsar med absorberande dynor rekommenderas för transport av urinprovet. Förvaringstemperaturer för urinprover beror på den avsedda behandlingstiden.

10.1.3 Insamling. transport och förvaring av torra provtagningspinnar

Torra provtagningspinnar används för insamling av olika patientprover. På grund av mångfaldigheten hänvisas till tillverkarens bipacksedel för korrekt provtyp och insamlingsmetod.

10.1.4 Insamling, transport och förvaring av Multi-Collect provtagningskit (Abbott, kat.nr 9K12-01)

Nedan sammanfattas insamling och transport av urinprover, vaginala prover och manliga uretrala prover insamlade med Multi-Collect provtagningskit (Abbott, kat.nr 9K12-01)

10.1.4.1 Insamling, transport och förvaring av urinprover

- 1. Patienten ska inte ha urinerat under minst 1 timme innan provtagningen.
- 2. Kasta provtagningspinnen; den behövs inte för insamling av urinprov.
- Patienten ska med hjälp av urininsamlingsbehållaren samla in 20–30 mL av den första portionen urin (den första delen av strålen).
- 4. Skruva av locket på transportröret och var noga med att inte spilla ut transportbuffertvätskan.
- 5. Hantera locket och röret försiktigt för att undvika kontaminering.
- 6. Använd plastpipetten för att överföra urin från insamlingsbehållaren till transportröret tills vätskenivån i röret befinner sig inom det klara fönstret på transportrörets etikett, annars måste nytt prov samlas in. Överfyll inte röret. Något mer än ett fullt tryck med pipetten krävs för att överföra tillräcklig mängd urinprov.
- 7. Sätt på locket på transportröret ordentligt. Säkerställ att locket sluter tätt.
- 8. Märk upp transportröret med providentifierande information, inklusive insamlingsdatum med hjälp av en klisteretikett. Var noga med att inte täcka fyllnadsfönstret på transportröret.
- 9. Efter insamling transporteras och förvaras transportröret vid 2 °C till 30 °C i upp till 14 dagar. Om längre förvaring krävs, förvara vid -10 °C eller kallare i upp till 90 dagar.

10.1.4.2 Insamling, transport och förvaring av vaginala prover

- 1. Kasta pipetten; den behövs inte för insamling av vaginala prover.
- 2. Avlägsna den sterila provtagningspinnen från förpackningen och var noga med att inte vidröra spetsen.
- 3. För in provtagningspinnens vita spets cirka 5 cm i vaginalöppningen.
- 4. Rotera försiktigt provtagningspinnen i 15–30 sekunder mot slidväggarna.
- 5. Dra försiktigt tillbaka provtagningspinnen.

- 6. Hantera locket och röret försiktigt för att undvika kontaminering.
- 7. Skruva av locket på transportröret och placera omedelbart provtagningspinnen i röret med den vita spetsen nedåt.
- 8. Bryt försiktigt av pinnen vid den perforerade linjen på skaftet. Var försiktig så att innehållet inte spills ut.
- 9. Sätt på locket på transportröret ordentligt. Säkerställ att locket sluter tätt.
- 10. Märk upp transportröret med providentifierande information, inklusive insamlingsdatum med hjälp av en klisteretikett.
- 11. Efter insamling transporteras och förvaras transportröret vid 2 °C till 30 °C i upp till 14 dagar. Öm längre förvaring krävs, förvara vid -10 °C eller kallare i upp till 90 dagar.

10.1.4.3 Insamling, transport och förvaring av manliga uretrala prover

- 1. Patienten ska inte ha urinerat under minst 1 timme innan provtagningen.
- 2. Kasta pipetten; den behövs inte för insamling av manliga uretrala prover.
- 3. Avlägsna den sterila provtagningspinnen från förpackningen och var noga med att inte vidröra spetsen.
- 4. För in provtagningspinnens vita spets 2–4 cm i urinröret.
- 5. Rotera försiktigt provtagningspinnen i 2–3 sekunder för att säkerställa tillräcklig provtagning.
- 6. Dra försiktigt tillbaka provtagningspinnen.
- 7. Hantera locket och röret försiktigt för att undvika kontaminering.
- 8. Skruva av locket på transportröret och placera omedelbart provtagningspinnen i röret med den vita spetsen nedåt.
- 9. Bryt försiktigt av pinnen vid den perforerade linjen på skaftet. Var försiktig så att innehållet inte spills ut.
- 10. Sätt på locket på transportröret ordentligt. Säkerställ att locket sluter tätt.
- 11. Märk upp transportröret med providentifierande information, inklusive insamlingsdatum med hjälp av en klisteretikett.
- 12. Efter insamling transporteras och förvaras transportröret vid 2 °C till 30 °C i upp till 14 dagar. Om längre förvaring krävs, förvara vid -10 °C eller kallare i upp till 90 dagar.

10.1.5 Insamling, transport och förvaring av Aptima[®] urinprovtagningskit (Hologic, kat.nr 301040)

Instruktionerna sammanfattas nedan för insamling och transport av manliga och kvinnliga urinprover med Aptima® urinprovtagningskit.

- 1. Användning av en klar, transparent urininsamlingsbehållare fri från konserveringsmedel eller transportmedium rekommenderas för självinsamlade prover.
- 2. Patienten instrueras att lämna in 20–30 mL av den första portionen urin i den tillhandahållna urininsamlingsbehållaren. Kvinnliga patienter ska inte skölja blygdläpparna innan provet samlas in.
- 3. Använd pipetten och transportröret som medföljer Aptima[®] urinprovtagningskit för att överföra 2 mL urin med hjälp av pipetten till transportröret. Urinvolymen måste befinna sig inom de svarta fyllda linjerna på transportröret. Urinen måste överföras från den klara, sterila urinbehållaren till Aptima provrör inom 24 timmar från insamlingstillfället.
- 4. Sätt på locket på transportröret ordentligt.
- 5. Efter insamling ska de bearbetade urinproverna i Aptima transportrören transporteras och förvaras vid 2°C till 30°C och förvaras vid 2 °C till 30 °C fram tills de testats. Se tillverkarens instruktioner för detaljerad förvaringsoptimering.

10.1.6 Insamling, transport och förvaring av Aptima® Unisex provtagningskit (Hologic, kat.nr 301041)

Nedan sammanfattas insamling och transport av endocervikala prover och manliga uretrala prover som samlats in med Aptima[®] Unisex provtagningskit (Hologic, kat.nr 301041).

10.1.6.1 Insamling, transport och förvaring av endocervikala prover

- Avlägsna överflödigt slem från livmodermunnen och omgivande slemhinna med hjälp av en rengöringspinne (pinne med vitt skaft i förpackningen med röd text). Kasta denna pinne. Obs: För att avlägsna överflödigt slem från livmodermunnen kan en pinne med stor spets (medföljer ej) användas.
- 2. För in provtagningspinnen (blått skaft i förpackningen med grön text) i den endocervikala kanalen.
- 3. Rotera försiktigt provtagningspinnen medsols i 10–30 sekunder i den endocervikala kanalen för att säkerställa tillräcklig provtagning.
- 4. Dra försiktigt tillbaka provtagningspinnen; undvik kontakt med den vaginala slemhinnan.
- 5. Avlägsna locket från transportröret och placera omedelbart provtagningspinnen i transportröret.
- Bryt försiktigt av skaftet mot sidan av röret vid den perforerade linjen och kasta restdelen av skaftet. Var försiktig så att innehållet inte spills ut.
- Sätt på locket på transportröret ordentligt. Efter insamling transporteras och förvaras provtagningspinnen i transportröret vid 2 °C till 30 °C tills provet testats.

10.1.6.2 Insamling, transport och förvaring av manliga uretrala prover

- 1. Patienten ska inte ha urinerat under minst 1 timme innan provtagningen.
- 2. För in provtagningspinnen (blått skaft i förpackningen med grön text) 2-4 cm i urinröret.
- 3. Rotera försiktigt provtagningspinnen medsols i 2–3 sekunder i urinröret för att säkerställa tillräcklig provtagning.
- 4. Dra försiktigt tillbaka provtagningspinnen.
- 5. Avlägsna locket från transportröret och placera omedelbart provtagningspinnen i transportröret.

- 6. Bryt försiktigt av skaftet mot sidan av röret vid den perforerade linjen och kasta restdelen av skaftet. Var försiktig så att innehållet inte spills ut.
- 7. Sätt på locket på transportröret ordentligt. Efter insamling transporteras och förvaras provtagningspinnen i transportröret vid 2 °C till 30 °C tills provet testats.

10.1.7 Insamling, transport och förvaring av ViCUM[®] 2 mL + Standard flockad provtagningspinne (deltalab, kat.nr 304278)

Nedan sammanfattas instruktionerna för insamling och transport av vaginala, cervikala, uretrala, faryngeala och rektala prover som samlats in med ViCUM[®] 2 mL + Standard flockad provtagningspinne (deltalab, kat.nr 304278).

- 1. Öppna förpackningen med båda händerna genom att dra i de motsatta sidorna.
- 2. Skaka röret.
- 3. Öppna flödesförpackningen och samla in provet med provtagningspinnen.
- 4. Öppna röret med den andra handen och placera provtagningspinnen i röret så att den täcks av medium.
- 5. Linjera brytpunkten på provtagningspinnen med rörets kant. Bryt av pinnen vid brytpunkten genom att trycka den mot rörets inre vägg.
- 6. Kasta restdelen, skruva på locket ordentligt och skaka provet för att blanda ut det i mediet.
- 7. Efter insamling transporteras och förvaras provtagningspinnen i transportröret vid 4 °C till 25 °C tills provet testats.

10.1.8 Insamling, transport och förvaring av Vacumed[®] Urin utan konserveringsmedel (FL medical, kat.nr 44950)

Nedan sammanfattas instruktionerna för insamling och transport av manlig och kvinnlig urin som samlats in med Vacumed[®] Urin utan konserveringsmedel (FL medical, kat.nr 44950).

- 1. Öppna locket på urininsamlingsbehållaren och lägg den upp och ned på en ren yta.
- 2. Vidrör inte de interna ytorna i behållaren och locket.
- 3. Samla in urinprovet. Fyll behållaren upp till tre fjärdedelar av kapaciteten.
- 4. Skruva på locket ordentligt.
- 5. Skaka försiktigt provet.
- 6. Lossa delvis skyddsetiketten (avlägsna den inte helt).
- 7. För in provröret och tillämpa ett lätt tryck. Håll röret anslutet tills det är fullt (flödet upphör).
- 8. Avlägsna provröret och sätt tillbaka skyddsetiketten ordentligt.
- 9. Förvara röret vid 4 °C till 25 °C tills provet testats.

10.1.9 Insamling. transport och förvaring av Standard FLOQSwab™ i 1 mL UTM™-medium (Copan. kat.nr 359C)

Nedan sammanfattas instruktioner för insamling och transport av kvinnliga vaginala prover som samlats in med Standard FLOQSwab™ i 1 ml UTM™-medium (Copan, kat.nr 359C).

- 1. Öppna UTM-kittets förpackning och avlägsna provröret med medium och den interna påsen som innehåller den sterila provtagningspinnen.
- 2. Ta ut den sterila provtagningspinnen från påsen och samla in provet. Säkerställ att spetsen inte kommer i kontakt med något förutom insamlingsområdet för att förhindra risken för kontaminering.
- 3. När provet samlats in, skruva loss och avlägsna locket från provröret och var försiktig så att du inte spiller ut mediet.
- 4. För in provtagningspinnen i provröret tills brytpunkten är i nivå med provrörets öppning.
- 5. Böj och bryt av provtagningspinnen vid brytpunkten samtidigt som du riktar provröret bort från ansiktet. Kasta den överblivna delen.
- 6. Skruva på locket på provröret och försegla det hermetiskt.
- 7. Behandla provet som förvaras i UTM-mediet inom 48 timmar från insamlingstillfället och förvara provröret vid 2 °C till 25 °C.
- 8. Centrifugera provet i 20 sekunder innan bearbetningen för att frigöra provet från provtagningspinnen och homogenisera mediet.

10.1.10 Insamling, transport och förvaring av cobas[®] PCR-medium (Roche, kat.nr 06466281190)

Nedan sammanfattas instruktionerna för insamling och transport av manlig och kvinnlig urin med cobas[®] PCR-medium (Roche, kat.nr 06466281190).

- 1. Blanda och överför urinen i cobas[®] PCR-medium provrör med hjälp av en pipett (tillhandahålls ej). Obs: urin kan förvaras vid 2–30 °C i upp till 24 timmar innan den överförs till cobas[®] PCR-medierör.
- 2. Rätt mängd urin har tillsatts när vätskenivån befinner sig mellan de två svarta linjerna på rörets etikett.
- 3. Skruva på locket ordentligt på cobas® PCR-medierör.
- 4. Vänd röret 5 gånger för att blanda. Provet är nu redo för transport och testning.
- 5. Transportera och förvara cobas[®] PCR-medierör med det stabiliserade urinprovet vid 2–30 °C.

10.1.11 Godkända provextrakt

Provextrakt som godkänts för användning inkluderar:

- cobas® x480 (från CT/NG-protokoll)

Se avsnitt 10.5 för instruktioner för förberedelse av PCR med extraherade nukleinsyror (reflexarbetsflöde).

10.2 Provbehandling

ResistancePlus® MG-kittet har validerats på följande extraktionsinstrument i Tabell 4.

Se avsnitt 10.3 för anvisningar om användning av den interna kontrollen.

Tabell 4. Validerade extraktionsprotokoll						
Instrument	Extraktionskit	Provvolym	Protokoll	Elueringsvolym		
MagNA Pure 96 ^a	MagNA Pure 96 DNA och Viral NA Small Volume Kit	200 µL	Pathogen Universal 200	50 μL eller 100 μL		
MagNA Pure 96 ^a	MagNA Pure 96 DNA och Viral NA Large Volume Kit	1 000 µL^	Viral NA Universal LV 1000 3.1	100 µL		
MICROLAB STARIet IVD ^b	STARMag 96 x 4 Universellt patronkit (Seegene)	300 µL	10 µL utspädda interna kontrollceller tillsatta per prov Välj "Pause before PCR setup" (Pausa före PCR-konfigurering) för att endast utföra provextraktion	100 µL		
QIAsymphony SP ^c	DSP Virus/Pathogen Mini Kit	200 µL	Complex200_V6_DSP	110 μL		
NucliSENS®	NucliSENS [®] easyMAG [®] -	200 µL-svabb	Generic 2.01; "On-board"-arbetsflöde	100 μL		
casyiviAG	reagenser	1 000 µL urin	Generic 2.01; "Off-board"-arbetsflöde	100 µL		

^a Se 10.3.1 för anvisningar om hur man använder intern kontroll med MagNA Pure 96

^b Se 10.3.2 för anvisningar om hur man använder intern kontroll med STARlet IVD

^c Se 10.3.3 för anvisningar om hur man använder intern kontroll med QIAsymphony SP

^d Se 10.3.4 för anvisningar om hur man använder intern kontroll med NucliSENS® easyMAG®

^ Öka testvolymsintaget för prover som insamlats i mediet (t.ex. Aptima Collection-kit)

10.3 Internal Control (IC) (Intern kontroll (IC))

Kittet omfattar en intern kontroll för att kontrollera extraktionseffektivitet och PCR-inhibering i realtid. Den interna kontrollanalysen tillhandahålls som en *Control Mix (Kontrollblandning)* (VIT) och *Internal Control Cells (Interna kontrollceller)* (RÖD). *Control Mix (Kontrollblandningen)* tillsätts i PCR Master Mix (PCR-masterblandningen) (Tabell 11). *Internal Control Cells (Interna kontrollceller)* innehåller den interna kontrollens DNA-mall. *Internal Control Cells (Interna kontrollceller)* späds och behandlas enligt nedan för specifika extraktionsinstrument. Den interna kontrollens DNA-mall är därför samextraherad med provet och samamplifierad i reaktionen.

10.3.1 Intern kontroll på MagNA Pure 96

Späd ut *intern kontrollcell* (**RÖD**) 1:200 i 1 x PBS (**Tabell 5**). Justera volymen efter behov med hjälp av samma spädningsfaktor (se extraktionskittets manual för minimivolym för antal prov som behövs). Utspädd intern kontrollcell laddas på det interna kontrollröret på MagNA Pure 96:

- För MagNA Pure 96 DNA och Viral NA Small Volume Kit (Pathogen Universal 200-protokollet) tillsätts 20 μL automatiskt i varje prov (standard).
- För MagNA Pure 96 DNA och Viral NA Large Volume Kit (Viral NA Universal LV 1000 3.1-protokollet) delas provvolymen och bearbetas i två separata brunnar på MagNA Pure 96 Processing Cartridge-processplatta.

Obs! Spara INTE utspädda Internal Control Cells (Interna kontrollceller).

Tabell 5. Spädning av Internal Control cells (Interna kontrollceller) MagNA Pure 96 (spädning 1:200)						
Internal Control Cells (Interna kontroliceller) (RÖD) (μL)	nternal Control Cells (Interna 1x PBS (μL) Totalvolym (μL) Volym tillsatt i prov (μL) kontrollceller) (RÖD) (μL)					
18	3582	3600	20			

10.3.2 Internal Control (Intern kontroll) på MICROLAB STARIet IVD

Späd ut Internal Control Cells (Interna kontroliceller) (RÖD) 1:20 i 1x PBS (**Tabell 6**). Justera volymen efter behov med hjälp av samma spädningsfaktor (se extraktionskittets handbok för minimivolym för antal prov som behövs). De utspädda interna kontrollcellerna laddas i en 2 mL-behållare och placeras på reagensstället, med 10 µL automatiskt tillsatt i varje prov.

Obs! Spara INTE utspädda Internal Control Cells (Interna kontrollceller).

Tabell 6. Spädning av Internal Control cells (Interna kontrollceller) för MICROLAB STARlet IVD (spädning 1:20)					
Internal Control Cells (Interna kontroliceller) (RÖD) (μL)	1x PBS (μL)	Totalvolym (μL)	Volym tillsatt i prov (μL)		
50	950	1000	10		

10.3.3 Internal Control (Intern kontroll) på QIAsymphony® SP

Späd ut Internal Control Cells (Interna kontroliceller) (RÖD) 1:50 i 1x PBS (Tabell 7). Justera volymen efter behov med hjälp av samma spädningsfaktor för det antal prov som behövs.

Obs! Lagra INTE utspädda Internal Control Cells (Interna kontrollceller)

Tabell 7. Spädning av Internal Control Cells (Interna kontrollceller) för QIAsymphony [®] SP (spädning 1:50)					
Internal Control Cells (Interna 1x PBS (μL) Totalvolym (μL) kontrollceller) (RÖD) (μL)					
40 1950 2000					

Utspädda Internal Control Cells (Interna kontrollceller) används sedan för att förbereda en AVE-blandning med RNA-buffert för intern kontrollbärare, såsom visas i **Tabell 8** nedan. Justera volymen efter behov med hjälp av samma spädningsfaktor för antalet prov som behövs (se extraktionskittets handbok för minimivolym för antal prov som behövs). AVE-blandningen med RNA-buffert för intern kontrollbärare ska förberedas omedelbart innan körningen startas.

AVE-blandningen med RNA-buffert för intern kontrollbärare tillsätts i en behållare som placeras i en provrörshållare och laddas på plats A i provlådan i QIAsymphony[®] SP. 120 μL (standard) av blandningen tillsätts i varje prov.

Tabell 8. Förberedelse av AVE-blandning med RNA-buffert för intern kontrollbärare för QIAsymphony SP					
Typ av behållare	Antal prover	Volym utspädda IC- celler (µL)	Lagerbärar- RNA (µL)	Buffert-AVE (µL)	Totalvolym (μL)
-	1	10	3	107	120
2 mL	1 + tomvolym^	40	12	428	480
14 mL	1 + tomvolym [#]	60	18	642	720

^ 2 mL-behållare kräver 3 ytterligare prover (360 $\mu L)$ för att kompensera för tomvolymen

[#]14 mL-behållare kräver 5 ytterligare prover (600 μL) för att kompensera för tomvolymen

10.3.4 Internal Control (Intern kontroll) på easyMAG®

Späd ut *Internal Control Cells (Interna kontrollceller)* (**RÖD**) 1:200 i 1x PBS (**Tabell 9**). Justera volymen efter behov med hjälp av samma spädningsfaktor. Förbered en "förblandning" av utspädda internal control cells (interna kontrollceller) och NucliSENS[®] easyMAG[®] Magnetic Silica för det antal prover som behövs (**Tabell 10**). 100 µL av förblandningskisel krävs per prov.

Obs! Lagra INTE utspädda Internal Control Cells (Interna kontrollceller)

Tabell 9. Spädning av Internal Control Cells (Interna kontrollceller) för NucliSENS [®] easyMAG [®] (spädning 1:200)							
Internal Control Cells (Interna kontrol/celler) (RÖD) (μL) 1x PBS (μL) Totalvolym (μL) Spädningsfaktor							
10	1990	2000	200				

Tabell 10. Förblandning av NucliSENS [®] easyMAG [®] Magnetic Silica och utspädda Internal Control Cells (Interna kontrollceller)						
Antal prover Volym utspädda IC-celler Volym magnetisk kisel Volym tillsatt i prov (µL) (µL)						
1	50	50	100			

Arbetsflöde av typen "on-board" eller "off-board" används beroende på provtypen. "Off-board"-arbetsflöde används för optimal nukleinsyraåtervinning för urinprov. Se bruksanvisningen för NucliSENS[®] easyMAG[®] för mer information.

"On-board"-arbetsflöde (svabbar)

Förflytta prover till provkärlet.

Ladda provkärl på easyMAG.

Programmera följande extraktionsbegäranden:

Protokoll: Generic 2.0.1 (för programvaruversion 2.0)

Matris: Annan

Volym (mL): 0,200

Eluat (µL): 100 µL

Typ: Primär

Efter inbyggd lysis ska 100 µL av förblandningskisel tillsättas i varje prov.

Fortsätt med extraktionsprocessen.

"Off-board"-arbetsflöde (urin)

Rulla ned NucliSENS Lysis Buffer-behållaren något och tillsätt 1 000 µL urin. Vortexbehållare.

Låt blandningen stå i rumstemperatur i 10 minuter.

Efter lysis ska lysaten förflyttas till provkärlen och laddas på easyMAG.

Tillsätt 100 μL av förblandningskisel i varje prov.

Programmera följande extraktionsbegäranden:

Protokoll: Generic 2.0.1 (för programvaruversion 2.0)

Matris: Annan

Volym (mL): 1,000

Eluat (µL): 100 µL

Typ: Lyserad

Fortsätt med extraktionsprocessen.

10.4 Förberedelse av realtids-PCR

Obs! Före användningen av reagenser, tina upp ordentligt, och blanda noggrant genom att vortexa kort.

Tabell 1 – Tabell 3 för beskrivning av kittets innehåll.

10.4.1 Masterblandningens förberedelse

Gör i ordning Master Mix (Masterblandningen) enligt beskrivningen i Tabell 11.

För en 20 µL reaktionsvolym krävs 15 µL masterblandning och 5 µL prov. Pipettera masterblandningen på PCR-plattan och tillsätt sedan extraherat prov till reaktionen.

En kontroll utan mall (NTC) ska inkluderas med varje körning. För NTC-reaktionen tillsätter du *Nuclease Free Water (Nukleasfritt vatten)* (**NEUTRALT**) i stället för prov.

Försegla plattan, centrifugera och överför till termocyklern.

Tabell 11. Masterblandning							
Reagens	Volym per 20 μL reaktion (μL)						
Nuclease Free Water (Nukleasfritt vatten) (NEUTRALT)	EJ TILLÄMPLIGT	3,0					
Plex Masterblandning (BLÅ)	2x	10,0					
MG+23S-blandning (BRUN)	20x	1,0					
Control Mix (Kontrollblandning) [≠] (VIT)	20x	1,0					
Totalvolym (µL) 15,0							
Tillsätt 5 μL t	Tillsätt 5 μL för en slutlig volym på 20 μL						

*Control Mix (Kontrollblandning) som inkluderas i varje kit är specifik för det PCR-instrument som används. Se Tabell 1 – Tabell 3 för korrekt Control Mix (Kontrollblandning) att använda

10.4.2 <u>Masterblandningens stabilitet</u>

Masterblandningen kan beredas i stora partier och förvaras vid -20 °C i upp till 4 veckor eller lagras vid 4 °C i upp till en vecka.

10.5 Förberedelse av PCR med extraherade nukleinsyror (reflexarbetsflöde)

Nukleinsyraextrakt erhållet utan tillsats av Internal Control Cells (Interna kontrollceller) (RÖDA) till prover kan testas med hjälp av ResistancePlus® MG-kittet.

Detta förfarande ska endast följas för extrakt som:

Tidigare har testats på en alternativ analysplattform enligt tillverkarens bruksanvisning och där det tidigare utförda testet genererade ett giltigt resultat.

Masterblandning ska förberedas enligt **avsnitt 10.4.1**. I sammanhanget med reflextester är den interna kontrollen inte närvarande i det extraherade provet. Kontrollblandningen måste dock inkluderas enligt **avsnitt 10.4.1**.

Se Tabell 1 – Tabell 3 för beskrivning av kittets innehåll.

Gör i ordning reaktionsblandningen så som beskrivs i **Tabell 11**. För en 20 µL reaktionsvolym krävs 15 µL masterblandning och 5 µL prov. Pipettera masterblandningen på PCR-plattan och tillsätt sedan extraherat prov till reaktionen.

En kontroll utan mall (NTC) ska inkluderas med varje körning. För NTC-reaktionen tillsätter du *Nuclease Free Water (Nukleasfritt vatten)* (**NEUTRALT**) i stället för prov. Försegla plattan, centrifugera och överför till termocyklern.

11 Programmering och analys

Detaljer för programmering och analys beskrivs i avsnitt 19 - avsnitt 23.

ResistancePlus[®] MG-kittet använder tre kanaler för detektion av *M. genitalium*, 23S rRNA-mutationen och den interna kontrollen (Tabell 12).

ResistancePlus[®] MG-programvaran är begränsad till analys av resultaten som motsvarar nukleinsyraextrakt som erhållits med tillsats av Internal Control Cells (Interna kontrollceller) (RÖD) till prover.

För nukleinsyraextrakt som erhållits utan tillsats av Internal Control Cells (Interna kontrollceller) (RÖD) till prover ska REFLEX **Resistance**Plus[®] MG-programvara användas. REFLEX **Resistance**Plus[®] MG-programvaran har två kanaler för att detektera *M. genitalium* och 23S rRNA-mutationen (**Tabell 13**).

Detta förfarande ska endast följas för extrakt som:

Tidigare har testats på en alternativ analysplattform enligt tillverkarens bruksanvisning och där det tidigare utförda testet genererade ett giltigt resultat.

Tabell 12. Kanaler för <i>ResistancePlus®</i> MG -mål									
Instrument	Instrument Kanal A Kanal B Kanal C								
	Detektion av <i>M. genitalium</i> (MgPa)	23S rRNA-mutation	Internal Control (Intern kontroll)						
LC480 II	465–510	533–580	533–640						
z 480	480 465–510		540–645						
7500 Fast och 7500 Fast Dx	FAM	JOE	TAMRA						
CFX96 Dx och CFX Touch	FAM	HEX	Quasar 705						

Tabell 13. Kanaler för <i>ResistancePlus[®]MG-mål för reflexarbetsflöde</i>						
Instrument	Kanal A	Kanal B				
	23S rRNA-mutation					
LC480 II	465–510	533–580				
z 480	465–510	540–580				
7500 Fast och 7500 Fast Dx FAM JOE						
CFX96 Dx och CFX Touch	FAM	HEX				

12 Tolkning av resultat

Resistance*Plus*[®] MG-analysprogramvaran krävs för tolkning av data. Även om *PlexPrime*[®]-primrar erbjuder högre specificitet än andra allelspecifika primrar, kan viss icke-specifik amplifikation från 23S rRNA-mutantanalysen ses i prover som innehåller höga koncentrationer av *M. genitalium* vildtyp 23S rRNA. *ResistancePlus*[®] MG-analysprogramvaran tolkar data från amplifieringsresultat automatiskt och effektiviserar arbetsflödet. Instruktioner gällande använding av analysprogrammet finns i **avsnitt 24**.

Se **Tabell 14** för det lämpliga analysprogrammet för varje realtids-PCR-instrument. Analysprogramvaran kan erhållas på begäran. Kontakta <u>tech@speedx.com.au</u> för mer information.

Tabell 14. <i>ResistancePlus®</i> MG-analysprogramvara					
Kat.nr	Analysprogramvara*	Realtids-PCR-instrument			
99003	Resistance <i>Plus</i> [®] MG (LC480)	LC480 II			
99018	Resistance <i>Plus</i> [®] MG (z 480)	z 480			
99002	Resistance <i>Plus</i> [®] MG (7500)	7500 Fast och 7500 Fast Dx			
99008	ResistancePlus [®] MG (CFX)	CFX96 Dx och CFX96 Touch			
99023	REFLEX ResistancePlus® MG (LC480)	LC480 II			
99024	REFLEX ResistancePlus® MG (z480)	z 480			
99026	REFLEX ResistancePlus® MG (7500)	7500 Fast och 7500 Fast Dx			
99025	REFLEX ResistancePlus® MG (CFX)	CFX96 Dx och CFX96 Touch			

* Se webbplatsen <u>https://plexpcr.com/products/sexually-transmitted-infections/resistanceplus-mg/#resources</u> för att kontrollera att du använder den senaste versionen av analysprogramvaran

13 Begränsningar

- ResistancePlus® MG-analysen riktar in sig på MgPa-genen för M. genitalium och mutationer vid positionerna 2058 och 2059 i 23S rRNA-genen (A2058G, A2059G, A2058T, A2058C, A2059C, E. coli-numrering) som förknippas med resistens mot azitromycin (makrolidantibiotika).
- ResistancePlus® MG-analysen bör endast utföras av personal som utbildats i proceduren och enligt denna bruksanvisning.
- Tillförlitliga resultat är beroende av korrekt insamling, transport, förvaring och behandling av prover. Underlåtenhet att följa lämpliga procedurer för något av dessa steg kan leda till felaktiga resultat.
- ResistancePlus® MG-analysen är en kvalitativ analys och ger inga kvantitativa värden eller information om organismmängd.
- Resultat från testet måste korreleras med klinisk historik, epidemiologiska data, laboratoriedata och andra data som är tillgängliga för klinikern.
- Prevalens av M. genitalium och makrolidresistens påverkar positiva och negativa förväntade värden för analysen.
- Detektion av antibiotikaresistensmarkörer kan inte korreleras med fenotypiskt genuttryck.
- Huruvida behandling har misslyckats eller lyckats kan inte fastställas utifrån analysresultaten, eftersom nukleinsyra kan förekommer efter lämpliga antimikrobiell behandling.
- Negativa resultat utesluter inte risken för infektion på grund av felaktig provinsamling, tekniska fel, förekomst av inhibitorer, provblandning eller liten mängd organismer i det kliniska provet.
- Negativa resultat för resistensmarkörerna indikerar inte känslighet mot detekterade mikroorganismer, eftersom resistensmarkörer som inte mätts av analysen eller andra potentiella mekanismer för antibiotikaresistens kan förekomma.
- Falskt positiva resultat kan förekomma på grund av korskontamination av målorganismer, deras nukleinsyror eller amplifierad produkt.

14 Kvalitetskontroll

ResistancePlus[®] MG -kittet inkluderar en intern kontroll för att övervaka extraktionseffektivitet och realtids-PCR-hämning (avsnitt 10.3).

När reflextester utförs har de interna kontrollcellerna i **Resistance**Plus[®] MG-kittet inte tilsats i extraktionsprocessen. Reflextester kan bara utföras på prover som tidigare har bestämts vara giltiga med ett annat system, vilket säkerställer att extraktionseffektivitet och qPCR-hämning har övervakats

ResistancePlus® MG Positive Control -kitet (kat.nr 95001) rekommenderas som positivt kontrollmaterial för nukleinsyradiagnostik. Se **avsnitt 15** för instruktioner om hur man använder *ResistancePlus®* MG Positive Controls. Ett känt negativt prov rekommenderas för användning som en negativ kontroll.

15 Instruktioner för ResistancePlus[®] MG Positive Control

ResistancePlus[®] MG Positive Control-kittlet innehåller positivt kontrollmaterial för *M. genitalium* 23S rRNA-mutanter och ett *M. genitalium*, 23S rRNA vildtyp (**Tabell 15**).

Tabell 15. Innehåll i <i>ResistancePlus®</i> Positive Control-kit (kat.nr 95001)							
Lockets färg	Innehållsförteckning	förteckning Beskrivning					
Neutral	MG, 23S rRNA vildtyp	Positiv kontrollmall för detektion av <i>M. genitalium</i> , 23S rRNA vildtyp	1 x 50 μL				
Grön	MG, 23S rRNA A2058G	Positiv kontrollmall för detektion av <i>M. genitalium</i> , 23S rRNA A2058G-mutation	1 x 50 μL				
Röd	MG, 23S rRNA A2059G	Positiv kontrollmall för detektion av <i>M. genitalium</i> , 23S rRNA A2059G-mutation	1 x 50 μL				
Blå	MG, 23S rRNA A2058T	Positiv kontrollmall för detektion av <i>M. genitalium</i> , 23S rRNA A2058T-mutation	1 x 50 μL				
Gul	MG, 23S rRNA A2058C	Positiv kontrollmall för detektion av <i>M. genitalium</i> , 23S rRNA A2058C-mutation	1 x 50 μL				
Lila	MG, 23S rRNA A2059C	Positiv kontrollmall för detektion av <i>M. genitalium</i> , 23S rRNA A2059C-mutation	1 x 50 µL				

15.1 Bruksanvisning

Förbered qPCR-reaktioner enligt beskrivningen i **avsnitt 10.4** med hjälp av positiv kontroll som prov.

ResistancePlus® MG-analysprogramvaran krävs för tolkning av data, se **avsnitt 24.11** för exempelresultat.

16 Prestandaegenskaper

16.1 Klinisk prestanda

16.1.1 Klinisk studie 1

En prospektiv-retrospektiv klinisk studie genomfördes på Royal Women's Hospital (RWH), Melbourne, Australien. Prover samlades in från maj 2016 till juni 2016 och baserat på kliniska laboratorieresultat, var 111 *M. genitalium*-positiv och 100 på varandra följande *M. genitalium*-negativa prover samlades in för att inkluderas i studien. De 211 proverna bestod av 84 urinprover, 7 analsvabbar, 1 urogenital svabb (inget ställe specificerat (nss)), 1 rektalsvabb och 1 uretrasvabb från män, samt 33 urinprov, 33 cervixsvabbar, 16 endocervixsvabbar, 14 vaginalsvabbar, 13 HVS-svabbar och 8 urogenitalsvabbar (nss) från kvinnor. För att bestämma prestandan hos *ResistancePlus®* MG kittet, jämfördes detektion av *M. genitalium* med kliniska laboratorieresultat från ett väletablerat 16S rRNA realtids-PCR som används för rutindiagnostik vid RWH ⁷ och 23S rRNA-detektion av mutanter jämfördes med Sanger-sekvensering⁸. *ResistancePlus®* MG-kittet genomfördes på LC480 II, efter provextraktion på MagNA Pure 96 Instrument med MagNA Pure 96 DNA and Viral NA Small Volume Kit med hjälp av protokollet Universal Pathogen 200. För detektion av *M. genitalium* användes en sammansatt referens för diskordanta prover med hjälp av en tredje realtids-PCR-reaktion med MgPa-genen som må⁸. För 23S rRNA-detektion av muterade bakterier, antogs Sanger-sekvensering som ett riktigt resultat. *ResistancePlus®* MG -kittets lösta resultat, sensitivitet och specificitet för detektion av *M. genitalium* och 23S rRNA-mutantdetektion visas i **Tabell 16**. Två prover exkluderades eftersom resultatet från Internal Control (Intern kontroll) var ogiltigt (1 urinprov från kvinna och 1 urinprov från man). Analys av detektion av 23S rRNA-mutation inkluderade endast prover där mutantstatus kunde fastställas. Analys av resultaten i enlighet med provtyp visas i **Tabell 17**. 23S rRNA-mutationsanalys visas i **Tabell 18**.

Tabell 16. Klinisk utvärdering av <i>ResistancePlus®</i> MG-kittet (klinisk studie 1)							
Detektion av <i>M. genitalium</i> 16S rRNA realtids-PCR				23S rRNA-o muterade Sekve	detektion av e bakterier nsering		
Positiv Negativ				Mutant Vildt			
ResistancePlus®	Positiv	106	0		Mutant detekterad	68	2
MG	Negativ	4	99^		Mutant ej detekterad	2	31
Sensitivitet 96,4 % (95 % Cl 91,0–99,0 %)			Sensitivitet	97,1 % (95 % CI 90,1–99,7 %)			
Specificitet 100,0 % (95 % Cl 96,3–100,0 %)			Specificitet	93,8 % (95 % (CI 79,2–99,2 %)		

95 % CI – 95 % konfidensintervall; Mutant – 23S rRNA-mutation i positionerna A2058G, A2059G, A2058T, A2058C och A2059C (*E. coli*-numrering); Vildtyp – frånvaro av mutation i dessa positioner

^ ResistancePlus® MG-kittet detekterade 1 sann M. genitalium-negativ med sammansatt referens, tabellen representerar lösta resultat

Tabell 17. Klinisk resultatanalys i enlighet med prov ^A (klinisk studie 1)						
Prov	Förväntade <i>M. genitalium</i> - negativ	Förväntade <i>M. genitalium</i> , 23S rRNA vildtyp	Förväntade <i>M. genitalium</i> , 23S rRNA-mutant			
Urin från man	28/28	8/10 ¹	41/42 ¹			
Urin från kvinna	12/13	11/11	4/6²			
Cervixsvabb	21/21	5/5	7/7 ³			
Endocervixsvabb	10/10	3/3	3/34			
Vaginalsvabb	8/8	1/1	2/25			
Vaginalsekret	9/9	1/1	4/4 ⁶			
Analsvabb från man	3/3	0/0	5/5 ⁷			
Svabb från kvinna (nss)	5/5	2/2	1/18			
Svabb från man (nss)	0/0	0/0	1/1 ⁹			
Rektalsvabb från man	1/1	0/0	0/0			
Urinrörssvabb från man	1/1	0/0	0/0			

Mutant – 23S rRNA-mutation i positionerna A2058G, A2059G, A2058T, A2058C och A2059C (*E. coli*-numrering); Vildtyp – frånvaro av mutation i dessa positioner

^ 2 urinprov från kvinna, 3 urinprov från man, 1 vaginalsvabb exkluderades eftersom sekvensering misslyckades och mutantstatus inte kunde fastställas

¹ Urinprov från man: 2 *M. genitalium* vildtyp felnämnda som *M. genitalium* mutant detekterad, 18 A2058G, 20 A2059G, 3 A2058T korrekt detekterade; 1 A2058G felnämnd som *M. genitalium* inte detekterad

 2 Urinprov från kvinna: 1 A2058G, 3 A2059G korrekt detekterade; 2 A2059G felnämnda som *M. genitalium* detekterade, mutant inte detekterad

³ Cervixsvabb: 1 A2058G, 6 A2059G korrekt detekterade

⁴ Endocervixsvabb: 2 A2059G, 1 A2058T korrekt detekterade

⁵ Vaginalsvabb: 3 A2058G, 1 A2059G korrekt detekterade

⁶ Vaginalsekret (HVS): 2 A2059G korrekt detekterade

⁷ Analsvabb från man: 1 A2058G, 3 A2059G, 1 A2058T korrekt detekterade

⁸ Svabb från kvinna (okänt ställe (nss)): 1 A2059G korrekt detekterad

9 Svabb från man (nss): 1 A2059G korrekt detekterad

Tabell 18. Analys av <i>M.</i> genitalium 23S rRNA- mutationsanalys (klinisk studie 1)						
Referensresultat [^] Resultat av ResistancePlus [®] MG						
Vildtyp	31/33 ¹					
A2058G	24/25 ²					
A2059G	39/41 ³					
A2058T	5/5					

^ For *M. genitalium*-positiva prover

 $^{\rm 1}$ Vildtyp: 2 urinprover från man felnämnda som *M. genitalium* mutant detekterad

 2 A2058G: 1 urinprov från man felnämnda som as M. genitalium inte detekterad

 $^{\rm 3}$ A2059G: 2 urinprover från kvinna felnämnda som M. genitalium mutant inte detekterad

SE

16.1.2 Klinisk studie 2

En undergrupp av de extraherade proverna från studie 1 kördes på 7500 Fast. Resultaten jämfördes med de kliniska resultatet från 16S rRNA realtids-PCR (Twin 2011) och Sanger-sekvensering (Twin 2012). Diskordanta prover för detektion av *M. genitalium* omtestades med 16S rRNA realtids-PCR (Twin 2011) på grund av misstänkt försämring av proverna. *ResistancePlus®* MG₍₅₅₀₎-kittets lösta resultat och sensitivitet och specificitet för detektion av *M. genitalium* och 23S rRNA-mutantdetektion visas i **Tabell 19**. Analys av detektion av 23S rRNA-mutation inkluderade endast prover där mutantstatus kunde fastställas.

Tabell 19. Klinisk utvärdering av <i>ResistancePlus®</i> MG ₍₅₅₀₎ -kittet (klinisk studie 2)							
Detektion av <i>M. genitalium</i> 16S rRNA realtids-PCR				23S rRNA muterac Sekve	-detektion av le bakterier ensering		
	Positiv Negativ				Mutant	Vildtyp	
ResistancePlus®	Positiv	99	0^		Mutant detekterad	62	0
MG	Negativ	2	81#	1#	Mutant ej detekterad	5	30
Sensitivitet 98,0 % (95 % Cl 93,0–99,8 %) Sens		Sensitivitet	92,5 % (95 % CI 83,4–97,5 %)				
S	pecificitet	100,0% (95 % CI	95,6–100,0%)		Specificitet	Specificitet 100,0 % (95 % CI 88,4–100,0 %	

95 % CI – 95 % konfidensintervall; Mutant – 23S rRNA-mutation i positionerna A2058G, A2059G, A2058T, A2058C och A2059C (*E. coli*-numrering); Vildtyp – frånvaro av mutation i dessa positioner

^ ResistancePlus® MG(550)-kittet detekterade 1 sann M. genitalium-positiv med referenstest, tabellen representerar lösta resultat

ResistancePlus® MG(550)-kittet detekterade 10 prover som sanna M. genitalium-negativa med hjälp av referenstest, tabellen visar lösta resultat

16.1.3 Klinisk studie 3

En retrospektiv klinisk studie utfördes vid Canterbury Health Laboratories (CHL), Christchurch, Nya Zeeland på karakteriserade, arkiverade prover från 2016–2017. Den bestod av 103 *M. genitalium*-positiva och 61 *M. genitalium*-negativa prover, som samlades in med multi-Collect Specimen Collection Kit (Abbott). De 164 proverna bestod av 110 urinprov och 4 rektalsvabbar från män, samt 11 urinprov, 17 cervixsvabbar, 15 vaginalsvabbar, 1 urinrörssvabb, 1 urinrörs-/ vaginalsvabb, 1 vaginal-/cervixsvabb och 4 prover från okända ställen från kvinnor. För att bestämma prestandan hos *ResistancePlus®* MG-kittet, jämfördes detektion av *M. genitalium* med kliniska laboratorieresultat från ett väletablerat MgPa-realtids-PCR, vilket även användes för rutindiagnostik vid CHL (Jensen 2004) och 23S rRNA-mutantdetektion jämfördes med Sanger-sekvensering (Jensen 2008). *ResistancePlus®* MG-kittet genomfördes på LC480 II, efter provextraktion på MagNA Pure 96 Instrument med MagNA Pure 96 DNA and Viral NA Small Volume Kit med hjälp av protokollet Universal Pathogen 200. För detektion av *M. genitalium* upprepades rutin-MgPA-testet avseende diskordanta prover. För 23S rRNA-detektion av muterade bakterier, antogs Sanger-sekvensering som ett riktigt resultat. Sensitiviteten och specificiteten för *ResistancePlus®* MG-kittet för detektion av *M. genitalium* och 23S rRNA-mutantdetektion visas i **Tabell 20**. Fem prover uteslöts eftersom resultatet från Internal Control (Intern kontroll) var ogiltigt. Analys av detektion av 23S rRNA-mutation inkluderade endast prover där mutantstatus kunde fastställas. Analys av resultaten i enlighet med provtyp visas i **Tabell 21**. 23S rRNA-mutationsanalysen visas i **Tabell 22**.

Tabell 20. Klinisk utvärdering av <i>ResistancePlus®</i> MG-kittet (klinisk studie 3)							
Detektion av <i>M. genitalium</i> 16S rRNA realtids-PCR				23S rRNA-o muterado Sekve	detektion av e bakterier nsering		
		Positiv	Negativ			Mutant	Vildtyp
ResistancePlus®	Positiv	90	0		Mutant detekterad	61	1
MG	Negativ	7	67^	Mutant ej detekterad	6	22	
Sensitivitet 92,8 % (95 % Cl 85,7–97,1 %)			Sensitivitet	91,0 % (95 % (CI 81,5–96,6 %)		
Specificitet 100,0% (95 % Cl 94,6–100,0 %)			Specificitet	95,6 % (95 % (CI 79,7–99,9 %)		

95 % CI – 95 % konfidensintervall; Mutant – 23S rRNA-mutation i positionerna A2058G, A2059G, A2058T, A2058C och A2059C (*E. coli*-numrering); Vildtyp – frånvaro av mutation i dessa positioner

^ The ResistancePlus® MG-kittet detekterade 7 sanna M. genitalium-negativa, tabellen representerar lösta resultat.

Tabell 21. Klinisk resultatanalys i enlighet med prov (klinisk studie 3)							
Prov	Förväntade <i>M. genitalium</i> - negativ Förväntade <i>M. genitalium</i> vildtyp		Förväntade <i>M. genitalium</i> , 23S rRNA-mutant				
Urin från man	45/45	17/18 ¹	38/47 ¹				
Urin från kvinna	4/4	1/1	6/6²				
Cervixsvabb	5/5	3/3	8/9 ³				
Vaginalsvabb	6/6	1/1	8/84				
Rektalsvabb från man	3/3	0/0	0/1 ⁵				
Kvinna (okänt ställe)	1/1	1/1	1/26				
Urinrörssvabb från kvinna	1/1	0/0	0/0				
Urinrörs-/vaginalsvabb	1/1	0/0	0/0				
Vaginal-/cervixsvabb	1/1	0/0	0/0				

Mutant – 23S rRNA-mutation i positionerna A2058G, A2059G, A2058T, A2058C och A2059C (*E. coli*-numrering); Vildtyp – frånvaro av mutation i dessa positioner

¹ Urinprov från man: 1 *M. genitalium* vildtyp felnämnd som *M. genitalium* mutant detekterad, 4 A2058G, 32 A2059G, 1 A2058T, 1 A2058C, 1 A2059C korrekt detekterade; 1 A2058G, 1 A2059G och 1 A2059C felnämnda som *M. genitalium* inte detekterad, 3 A2058G och 2 A2059G felnämnda som *M. genitalium* mutant inte detekterad

² Urinprov från kvinna: 2 A2058G, 4 A2059G korrekt detekterade

³ Cervixsvabb: 3 A2058G, 4 A2059G, 1 A2058C korrekt detekterade; 1 A2059G felnömnd som *M. genitalium* inte detekterad

⁴ Vaginalsvabb: 1 A2058G, 7 A2059G korrekt detekterade

⁵ Rektalsvabb från man: 1 A2059G felnämnd som *M. genitalium* inte detekterad

⁶ Kvinna (okänd plats): 1 A2059G korrekt detekterad; 1 A2059G felnämnd som *M. genitalium* mutant inte detekterad

Tabell22.Analysav <i>M. genitalium</i> 23SrRNA-mutationanalys(klinisk studie 3)						
Referensresultat^ Resultat av ResistancePlus® MG						
Vildtyp	22/23 ¹					
A2058G	10/13 ²					
A2059G	47/50 ³					
A2058T	1/1					
A2058C	2/2					
A2059C	1/1					

[^] For *M. genitalium*-positiva prover

 $^{\rm 1}$ Vildtyp: 2 urinprover från man felnämnda som $\it M.$ genitalium mutant detekterad

² A2058G: 1 urinprov från man felnämnda som as *M. genitalium* mutant inte detekterad

³ A2059G: 2 urinprover från man felnämnda som *M. genitalium* mutant inte detekterad, 1 prov från kvinna (okänd plats) felnämnd som *M. genitalium* mutant inte detekterad

16.1.4 Klinisk studie 4

En retrospektiv klinisk studie genomfördes vid Vall d'Hebron University Hospital (HUVH), Barcelona, Spanien, för att utvärdera prestandan hos **Resistance**Plus[®] MG₍₆₇₅₎-kittet för detektion av *M. genitalium* och mutationer förknippade med resistens mot azitromycin i retrospektiva insamlade prover under perioden december 2017 till april 2018. Prover inkluderade 92 *M. genitalium*-positiva och 108 på varandra följande *M. genitalium*-negativa prover, insamlade med DeltaSwab ViCUM[®] (Deltalab, Spanien) för svabbar eller Vacumed[®] Urine (FL medical, Italien) för urinprov från män och kvinnor. De 200 proverna bestod av 46 urinprover, 30 vaginalsvabbar, 30 urinrörssvabbar, 40 cervixsvabbar, 8 svalgprov och 46 rektalsvabbar. Proverna extraherades med STARlet IVD (Hamilton) och kördes på instrumentet CFX96 Dx(Bio-Rad). Prestandan utvärderades genom att jämföra detektion av *M. genitalium* och 23S rRNA-status. Sensitiviteten och specificiteten för **Resistance**Plus[®] MG₍₆₇₅₎-kittet för detektion av *M. genitalium* jämfört med Allplex[™] STI Essential (Seegene) och visas i **Tabell 23**. Sensitiviteten och specificiteten för **Resistance**Plus[®] MG₍₆₇₅₎-kittet för detektion av *M. genitalium* jämfört med Allplex[™] STI Essential (Seegene) och visas i **Tabell 23**. Sensitiviteten och specificiteten för **Resistance**Plus[®] MG₍₆₇₅₎-kittet för detektion av *M. genitalium* jämfört med Allplex[™] STI Essential (Seegene) och visas i **Tabell 23**. Sensitiviteten och specificiteten för **Resistance**Plus[®] MG₍₆₇₅₎-kittet för detektion av *M. genitalium* jämför med Allplex[™] STI Essential (Seegene) och visas i **Tabell 23**. Sensitiviteten och specificiteten för **Resistance**Plus[®] MG₍₆₇₅₎-kittet för detektion av *M. genitalium* jämför med Allplex[™] STI Essential (Seegene) och visas i **Tabell 23**. Sensitiviteten och specificiteten för **Resistance**Plus[®] MG₍₆₇₅₎-kittet för detektion av *M. genitalium* ar 100,0 % (95 % CI 95,9–100,0 %) respektive 97,4 % (95 % CI 92,4–99,5 %), och 23S rRNA-mutantdetektion framgår av **T**

Tabell 23. Jämförelse av <i>ResistancePlus</i> [®] MG ₍₆₇₅₎ -kittet med Allplex™ STI Essential (klinisk studie 4)					
		Detektion av <i>M. genitalium</i> Allplex™ STI Essential			
		Positiv	Negativ		
ResistancePlus [®]	Positiv	89	1		
MG ₍₆₇₅₎	Negativ	3	107		
Sensitivitet 96,7 % (95 % Cl 90,8–99,3 %			5 CI 90,8–99,3 %)		
	Specificitet	99,1 % (95 % Cl 94,95–100,0 %)			

Tabell 24. Klinisk utvärdering av <i>ResistancePlus®</i> MG ₍₆₇₅₎ -kittet (klinisk studie 4)							
Detektion av <i>M. genitalium</i> <i>ResistancePlus®</i> MG (LC480 II)			23S rRNA-mutantder ResistancePlus® (LC480 II)		mutantdetektion [#] <i>ancePlus[®]</i> MG ⊾C480 II)		
		Positiv	Negativ			Mutant detekterad	Mutant ej detekterad
ResistancePlus®	Positiv	87	3		Mutant detekterad	42^	0
MG ₍₆₇₅₎	Negativ	0	110		Mutant ej detekterad	2	42*
				r –			
Sensitivitet 100,0 % (95 % CI 95,9–100,0 %)			Sensitivitet	95,5 % (95	% CI 84,5–99,4 %)		
	Specificitet	97,4 % (95 % (97,4 % (95 % Cl 92,4–99,5%)		Specificitet	100,0 % (95 % Cl 91,6–100,0 %)	

95 % CI – 95 % konfidensintervall; Mutant – 23S rRNA-mutation i positionerna A2058G, A2059G, A2058T, A2058C och A2059C (*E. coli*-numrering); Vildtyp – frånvaro av mutation i dessa positioner

^ The ResistancePlus® MG(675)-kittet detekterade 1 sann M. genitalium-mutant med referenstest, tabellen representerar lösta resultat

* The ResistancePlus® MG(675)-kittet detekterade 1 sann M. genitalium-negativ med referenstest, tabellen representerar lösta resultat

[#] 1 prov exkluderades från analysen eftersom detta sekvenserades som blandad vildtyp och mutant

Tabell 25. Klinisk resultatanalys i enlighet med prov (klinisk studie 4)							
Prov	Förväntad <i>M. genitalium</i> - negativ Förväntade <i>M. genitalium</i> , 23S rRNA vildtyp		Förväntade <i>M. genitalium</i> , 23S rRNA-mutant				
Urin från man	26/26	5/5	15/15				
Urinrörssvabb från man	15/15	3/3	11/12 ¹				
Cervixsvabb från kvinna	16/16	11/11	2/3 ³				
Vaginalsvabb från kvinna	20/20	15/15	5/5				
Rektalsvabb från man	19/22 ¹	5/5	8/8				
Rektalsvabb från kvinna	7/7	3/3	0/0				
Svalgsvabb från man	5/5	0/0	1/1				
Svalgsvabb från kvinna	2/2	0/0	0/0				

¹ Rektalsvabb från man: 3 *M. genitalium*-negativa felnämnda som *M. genitalium*-positiva

² Urinrörssvabb från man: 1 M. genitalium 23S rRNA mutation positiv felnämnd som M. genitalium 23S rRNA mutation negativ

³ Cervixsvabb från kvinna: 1 M. genitalium 23S rRNA mutation positiv felnämnd som M. genitalium 23S rRNA mutation negativ

16.1.5 Klinisk studie 5

En retrospektiv studie utfördes på Royal Women's Hospital (RWH), Melbourne, Australien med urinprover och svabbar insamlade med Aptima® mellan juni 2017 och november 2017. Matchande patientprover bestod av 98 *M. genitalium*-positiva och 87 på varandra följande *M. genitalium*-negativa, insamlade som ren urin (rutinprov) eller med Aptima® Urine Specimen Collection-kit (Hologic) eller som torr svabb (rutinprov) eller med Aptima® Unisex Swab Specimen Collection-kit (Hologic). De 185 proverna bestod av 122 urin, 18 rektalsvabbar, 15 cervixsvabbar och 25 vaginalsvabbar. För att fastställa prestandan hos Aptima®-insamlade prover med *ResistancePlus*® MG-kittet, jämfördes detektion av *M. genitalium* och 23S rRNA-mutant med kliniska diagnostikresultat som erhållits av *ResistancePlus*® MG-kittet (SpeeDx) med användning av rutinprovet. Tester av Aptima®-insamlade prover genomfördes på LC480 II, efter provextraktion på MagNA Pure 96 Instrument med MagNA Pure 96 DNA and Viral NA Small Volume Kit med hjälp av protokollet Viral NA Universal LV 1000. Kliniska diagnostikresultat från RWH, som erhölls från ett matchat diagnostiskt prov som testats med *ResistancePlus*® MG-kittet (SpeeDx), antogs som det sanna resultatet för *M. genitalium*. För detektionen av 23S rRNA mutant jämfördes resultatet med det diagnostiska resultatet och Sanger-sekvensering.

Sensitiviteten och specificiteten för **Resistance**Plus[®] MG-kittet för detektion av *M. genitalium* och 23S rRNA-mutantdetektion visas i **Tabell 26**. Analys av detektion av 23S rRNA-mutation inkluderade endast prover där mutantstatus kunde fastställas. Analys av resultaten i enlighet med provtyp visas i **Tabell 27**.

Tabell 26. Klinisk utvärdering av <i>ResistancePlus[®]</i> MG-kittet (klinisk studie 5)							
		Detektion av <i>M. genitalium</i> <i>ResistancePlus®</i> MG (rutinprov)				23S rRNA-detektion av mutera bakterier <i>ResistancePlus®</i> MG (rutinprov)	
		Positiv Negativ				Mutant	Vildtyp
ResistancePlus®	Positiv	94	3		Mutant detekterad	65	0
Aptima-prov)	MG (med 1 mL Aptima-prov) Negativ 4 84		Mutant ej detekterad	1*	28		
Sensitivitet 95,9 % (95 % Cl 89,9–98,9 %)		CI 89,9–98,9 %)		Sensitivitet	98,5 % (95 % CI 91,8–100,0 %)		
Specificitet 96,6 % (95 % Cl 90,3–99,3 %)			Specificitet	100,0 % (95 %	% CI 87,7–100,0 %)		

* Provet kunde inte sekvenseras

Tabell 27. Klinisk resultatanalys i enlighet med provtyp (klinisk studie 5)							
Prov	Förväntad <i>M. genitalium</i> - negativ	Förväntade <i>M. genitalium</i> vildtyp	Förväntade <i>M. genitalium</i> , 23S rRNA-mutant				
Urin	50/52 ¹	21/22 ¹	45/48 ¹				
Cervixsvabb	11/11	1/1	3/3				
Vaginalsvabb	14/15 ²	3/42	6/6				
Rektalsvabb	9/9	3/3	5/6 ³				
Analsvabb	0/0	0/0	5/5				

Mutant – 23S rRNA-mutation i positionerna A2058G, A2059G, A2058T, A2058C, A2059C (*E.coli*-numrering); Vildtyp – frånvaro av mutation i dessa positioner

¹ Urinprov: 2 *M. genitalium*-negativa felnämnda som *M. genitalium* vildtyp respektive mutant; 1 *M. genitalium* vildtyp felnämnd som *M. genitalium*-negativ; 2 *M. genitalium*-mutanter felnämnda som *M. genitalium* vildtyp, 1 *M. genitalium*-mutant felnämnd som *M. genitalium*-negativ

² Vaginalsvabb: 1 *M. genitalium*-negativ felnämnd som *M. genitalium* vildtyp; 1 *M. genitalium* vildtyp felnämnd som *M. genitalium*-negativ

³ Rektalsvabb: 1 M. genitalium-mutant felnämnd som M. genitalium-negativ

16.1.6 Klinisk studie 6

En retrospektiv klinisk studie genomfördes vid University of Queensland Centre for Clinical Research (UQCCR), Australien, med hjälp av cobas[®] x480-extrakt från urin- och svabbprover som samlades in mellan februari 2017 och februari 2019. Proven bestod av 85 *M. genitalium*-positiva och 84 *M. genitalium*-negativa extrakt, som ursprungligen samlades in som ren urin eller med cobas[®] PCRmedieinsamlingskit (Roche) och extraherades på cobas[®] x480-instrumentet (cobas[®] 4800, Roche) med hjälp av protokollet "Full Workflow" och "CT/NG", utan tillsättning av SpeeDx Internal Control Cells (Interna kontrollceller). De 169 extrakten bestod av 28 rektalsvabbar, 13 vaginalsvabbar, 5 vaginalsekret, 15 cervixsvabbar, 1 ektocervixsvabb, 5 urinrörssvabbar, 5 svalgsvabbar, 1 penissvabb, 1 svabb från mans urinrör, 1 munsvabb samt 83 prover med manligt urin och 11 prover med kvinnligt urin.

För att fastställa prestanda för cobas[®]-extrakt med **Resistance**Plus[®] MG₍₅₅₀₎-kittet jämfördes detektion av *M. genitalium* med det rutinmässiga diagnostikresultatet (MgPa PCR-analys (Trembizki *et al.*, 2017)) och 23S rRNA-mutantdetektion jämfördes med Sangersekvensering. **Resistance**Plus[®] MG₍₅₅₀₎-kittet användes på ABI 7500 Fast Dx. Sensitiviteten och specificiteten för **Resistance**Plus[®] MG₍₅₅₀₎-kittet för detektion av *M. genitalium* och 23S rRNA-mutantdetektion visas i **Tabell 28**. Analys av detektion av 23S rRNAmutation inkluderade endast prover där mutantstatus kunde fastställas. Analys av resultaten i enlighet med provtyp visas i **Tabell 29**. 23S rRNA-mutationsanalys visas i **Tabell 30**.

Tabell 28. Klinisk utvärdering av <i>ResistancePlus®</i> MG ₍₅₅₀₎ -kittet (klinisk studie 6)							
	Detektion av <i>M. genitalium</i> MgPa qPCR				23S rRNA muterac Sanger-s	-detektion av le bakterier ekvensering	
Positiv Negativ				Mutant	Vildtyp		
ResistancePlus®	Positiv	80	0		Mutant detekterad	49^	0
MG(550)	Negativ	5	84		Mutant ej detekterad	0	25
Sensitivitet 94,1 % (95 % Cl 86,8–98,1 %)			Sensitivitet	100,0 % (95 %	CI 92,8-100,0 %)		
	Specificitet	100,0 % (95 % CI 95,7–100,0 %)			Specificitet	100,0 % (95 %	CI 86,3–100,0 %)

^1 vaginalprov gav ett blandat vildtyp-/A2059G-sekvenseringsresultat som korrekt identifierades som mutant av *ResistancePlus*[®] MG₍₅₅₀₎-analysen

Tabell 29. Klinisk resultatanalys i enlighet med prov (klinisk studie 6) *							
Prov	Förväntade <i>M. genitalium</i> - negativ	Förväntade <i>M. genitalium</i> , 23S rRNA vildtyp	Förväntade <i>M. genitalium</i> , 23S rRNA-mutant				
Urin från man	42/42	13/13	26/27 ¹				
Urin från kvinna	6/6	1/1	3/3 ²				
Cervixsvabb	5/5	6/6	2/2 ³				
Ektocervixsvabb	1/1	-	-				
Vaginalsvabb	1/1	1/2	7/74^				
Vaginalsekret	2/2	2/2	1/1 ⁵				
Rektalsvabb från man	17/17	1/1	7/86				
Rektalsvabb från kvinna	1/1	-	-				
Urinrörssvabb från man	3/3	-	2/27				
Svalgsvabb från man	5/5	-	-				
Penissvabb	-	1/1	-				
Svabb från mans urinrör	-	-	1/1 ⁸				
Munsvabb från man	1/1	-	-				

6 prover exkluderades eftersom sekvensering misslyckades och sann status för 23S inte kunde fastställas. Dessa prover utgjordes av: 2 cervix-, 2 urin-, 1 vaginal- och 1 rektalprov

¹ Urinprov från man: 8 A2058G, 3 A2058T och 15 A2059G korrekt identifierade; 1 A2058T identifierades felaktigt som *M. genitalium* inte detekterad

² Urinprov från kvinna: 2 A2058G och 1 A2059G korrekt identifierade

³ Cervixsvabb: 2 A2058G korrekt identifierade

⁴ Vaginalsvabb: 3 A2058G, 2 A2058T och 1 A2059G korrekt identifierade; ^ 1 vaginalsvabb identifierades som en blandning av vildtyp/A2059G

⁵ Vaginalsekret (HVS): 1 A2059G korrekt identifierad

⁶ Rektalsvabb från man: 5 A2059G, 1 A2058T och 1 A2058G korrekt identifierade; 1 A2058G identifierades felaktigt som *M. genitalium* inte detekterad

⁷ Urinrörssvabb från man: 2 A2059G korrekt identifierade

⁸ Svabb från mans urinrör: 1 A2059G korrekt identifierat

Tabell 30. Analys av <i>M. genitalium</i> 23SrRNA-mutationsanalys (klinisk studie 6)						
Referensresultat^ Resultat av ResistancePlus® MG						
Vildtyp	25/26 ¹					
A2058G	16/17 ²					
A2059G	27/27 ³					
A2058T	6/7 ⁴					
A2058C	-					
A2059C	-					

^ Endast för *M. genitalium*-positiva prover

¹ Vildtyp: 1 vaginalsvabb felnämnd som *M. genitalium* inte detekterad

²A2058G: 1 rektalsvabb felnämnd som *M. genitalium* inte detekterad

 $^{\rm 3}$ A2059G: 1 vaginalsvabb blandad vildtyp/A2059G korrekt identifierad som $\it M.$ genitalium, 23S-mutation detekterad

 $^{\rm 4}$ A2058T: 1 svabb med manligt urin felbenämnd som *M. genitalium* inte detekterad

16.1.7 Klinisk studie 7

En retrospektiv klinisk studie genomfördes vid Microbiological Diagnostic Unit Public Health Unit (MDU), Victoria, Australien, med hjälp av torra svabbar och rent urin som samlats in mellan oktober 2018 och januari 2019. Proven bestod av 59 *M. genitalium*-positiva och 31 *M. genitalium*-negativa prover, inklusive 15 analsvabbar, 19 vaginalsvabbar, 2 vaginalsekret, 8 cervix, 1 urinrörssvabb samt 45 prover med manligt urin.

Resistance*Plus*[®] MG-kittet användes på LC480 II, efter provextraktion på QIAsymphony SP (QIAGEN)-instrumentet med hjälp av DSP Virus/Pathogen Mini-kittet och protokollet Complex200_V6_DSP. Resultaten jämfördes med de rutinmässiga diagnostikresultaten som erhölls från **Resistance***Plus*[®] MG-kittet (SpeeDx) med hjälp av prover som extraherats på MagNA Pure 96 Instrument (MP96). För diskordanta resultat utfördes ett 16S rRNA qPCR-test (Twin 2011) för detektion av *M. genitalium* och 23S rRNA-mutantdetektion utfördes med Sanger-sekvensering (Twin 2012). Sensitiviteten och specificiteten för **Resistance***Plus*[®] MG-kittet för detektion av *M. genitalium* och 23S rRNA-mutantdetektion visas i **Tabell 31**. Analys av detektion av 23S rRNA-mutation inkluderade endast prover där mutantstatus kunde fastställas. Analys av resultat i enlighet med provtyp visas i **Tabell 32**.

Tabell 31. Klinisk utvärdering av <i>ResistancePlus®</i> MG-kittet (klinisk studie 7)							
		Detektion av <i>M. genitalium</i> <i>ResistancePlus®</i> MG (MP96)			23S rRNA- muterade ResistancePl	detektion av e bakterier us [®] MG (MP96)	
		Positiv	Negativ			Mutant	Vildtyp
ResistancePlus [®]	Positiv	54	0%		Mutant detekterad	28	1#
(QIAsymphony SP)	Negativ	1*	34		Mutant ej detekterad	1#	22
Sensitivitet		98,2 % (95 % CI 90,3–100,0 %)			Sensitivitet	96,6 % (95 %	CI 82,2–99,9 %)
Specificitet		100,0 % (95 % Cl 89,7–100,0 %)			Specificitet	95,7 % (95 %	CI 78,1–99,9 %)

* ResistancePlus® MG-kittet detekterade 6 sanna M. genitalium-negativa prover som var positiva med referenstest, tabellen visar lösta resultat

[%] ResistancePlus[®] MG-kittet detekterade 2 sanna *M. genitalium*-positiva prover som var negativa med referenstest, tabellen visar lösta resultat [#]2 diskordanta urinprover kunde inte lösas eftersom sekvensering misslyckades

Tabell 32. Klinisk resultatanalys i enlighet med prov (klinisk studie 7) *							
Prov	Förväntade <i>M. genitalium</i> - negativ Förväntade <i>M. genitalium</i> , 23S rRNA vildtyp		Förväntade <i>M. genitalium</i> , 23S rRNA-mutant				
Urin från man	17/17	9/9	12/14 ¹				
Urin från kvinna	1/1	1/2 ²	1/1				
Cervixsvabb	3/3	2/2	3/3				
Vaginalsvabb	8/8 [#]	7/7	3/3				
Vaginalsekret	1/1	1/1	-				
Analsvabb från man	4/4	2/2	8/8				
Urinrörssvabb från man	_	_	1/1				

[#] 1 vaginalsvabb exkluderades eftersom den genererade ett ogiltigt resultat med **Resistance**Plus[®] MG-kittet

¹ Urinprov från man: 1 *M. genitalium* 23S rRNA vildtyp felaktigt identifierad som *M. genitalium* inte detekterad; 1 *M. genitalium* 23S rRNA-mutant felaktigt identifierad som *M. genitalium* detekterad, 23S-mutation inte detekterad

² Urinprov från kvinna: 1 felaktigt identifierad som *M. genitalium* detekterad, 23S rRNA-mutation detekterad

16.2 Analytisk prestanda

16.2.1 <u>Reproducerbarhet och repeterbarhet</u>

Resistance*Plus*[®] MG-kittets reproducerbarhet och repeterbarhet på LC480 II bedömdes med hjälp av kvantifierad syntetisk mall för *M. genitalium* MgPa och 23S rRNA-målen (A2058G, A2059G, A2058T, A2058C och A2059C) vid 10 000 och 3x LOD-kopior per reaktion med användning av 6 replikat (om ingenting annat anges). Experimenten utfördes på LC480 II.

För att fastställa variabiliteten från sats till sats, testades två satser, körda på en maskin och genomförda av en användare (**Tabell 33**). De två satserna visade god reproducerbarhet med variationskoefficient (%CV) mellan 0,35–2,37 % för alla mål.

Tabell 33. Variabilitet från lot till lot (sats till sats)				
	Genomsnittlig Cq	STDEV	% CV	Antal prover
MgPa 10 000 kopior	16,9	0,15	0,89	12/12
MgPa 30 kopior	25,5	0,52	2,05	12/12
A2058G 10 000 kopior	20,4	0,48	2,37	12/12
A2058G 36 kopior	27,8	0,43	1,54	12/12
A2059G 10 000 kopior	18,0	0,06	0,35	12/12
A2059G 30 kopior	25,6	0,50	1,94	12/12
A2058T 10 000 kopior	18,7	0,09	0,46	12/12
A2058T 30 kopior	26,2	0,30	1,14	12/12
A2058C 10 000 kopior	17,7	0,13	0,75	12/12
A2058C 30 kopior	25,4	0,29	1,15	12/12
A2059C 10 000 kopior	19,2	0,08	0,42	12/12
A2059C 45 kopior	25,0	0,26	1,03	12/12

För att fastställa variabilitet från dag till dag, utfördes tester under tre dagar av en användare på samma maskin (**Tabell 34**). De tre körningarna visade god reproducerbarhet mellan olika dagar med variationskoefficient mellan 0,44–2,31 % för alla mål.

Tabell 34. Variabilitet från dag till dag				
	Genomsnittlig Cq	STDEV	% CV	Antal prover
MgPa 10 000 kopior	17,0	0,18	1,09	18/18
MgPa 30 kopior	25,6	0,59	2,31	18/18
A2058G 10 000 kopior	20,2	0,37	1,83	18/18
A2058G 36 kopior	27,9	0,51	1,84	18/18
A2059G 10 000 kopior	18,1	0,24	1,34	18/18
A2059G 30 kopior	25,7	0,32	1,23	18/18
A2058T 10 000 kopior	18,7	0,23	1,22	18/18
A2058T 30 kopior	26,3	0,31	1,17	18/18
A2058C 10 000 kopior	17,8	0,16	0,88	18/18
A2058C 30 kopior	25,5	0,31	1,22	18/18
A2059C 10 000 kopior	19,2	0,08	0,44	18/18
A2059C 45 kopior	25,0	0,46	1,82	18/18

För att fastställa variabilitet från körning till körning jämfördes tre körningar av realtids-PCR, utförda på samma dag av samma användare (**Tabell 35**). De tre körningarna visade god reproducerbarhet med variationskoefficient mellan 0,40-3,20 %. för alla mål.

Tabell 35. Variabilitet från körning till körning				
	Genomsnittlig Cq	STDEV	% CV	Antal prover
MgPa 10 000 kopior	17,0	0,07	0,40	18/18
MgPa 30 kopior	25,7	0,47	1,83	18/18
A2058G 10 000 kopior	19,8	0,63	3,20	18/18
A2058G 36 kopior	27,5	0,51	1,85	18/18
A2059G 10 000 kopior	18,4	0,11	0,61	18/18
A2059G 30 kopior	25,7	0,39	1,52	18/18
A2058T 10 000 kopior	18,7	0,22	1,18	18/18
A2058T 30 kopior	26,4	0,42	1,59	18/18
A2058C 10 000 kopior	17,8	0,08	0,46	18/18
A2058C 30 kopior	25,5	0,31	1,22	18/18
A2059C 10 000 kopior	19,2	0,15	0,76	18/18
A2059C 45 kopior	25,2	0,40	1,57	18/18

För att fastställa variabiliteten mellan användare jämfördes två körningar från två användare (**Tabell 36**). De två körningarna från olika användare visade god reproducerbarhet med en variationskoefficient på 0,54–1,86 % för alla mål.

Tabell 36. Användarvariabilitet				
	Genomsnittlig Cq	STDEV	% CV	Antal prover
MgPa 10 000 kopior	16,8	0,12	0,73	12/12
MgPa 30 kopior	25,3	0,41	1,61	12/12
A2058G 10 000 kopior	20,2	0,24	1,21	12/12
A2058G 36 kopior	27,9	0,45	1,62	12/12
A2059G 10 000 kopior	17,9	0,10	0,58	12/12
A2059G 30 kopior	25,5	0,39	1,53	12/12
A2058T 10 000 kopior	18,6	0,10	0,54	12/12
A2058T 30 kopior	26,1	0,31	1,20	12/12
A2058C 10 000 kopior	17,7	0,13	0,71	12/12
A2058C 30 kopior	25,2	0,27	1,06	12/12
A2059C 10 000 kopior	19,1	0,16	0,83	12/12
A2059C 45 kopior	24,9	0,46	1,86	12/12

För att fastställa variabiliteten mellan instrument jämfördes två körningar från två maskiner, utförda av samma användare (**Tabell 37**). Körningarna från olika instrument visade god reproducerbarhet med en variationskoefficient på 0,21–2,62 % för alla mål.

Tabell 37. Instrumentvariabilitet				
	Genomsnittlig Cq	STDEV	% CV	Antal prover
MgPa 10 000 kopior	16,7	0,10	0,60	12/12
MgPa 30 kopior	25,4	0,67	2,62	12/12
A2058G 10 000 kopior	20,0	0,07	0,33	12/12
A2058G 36 kopior	27,8	0,51	1,82	12/12
A2059G 10 000 kopior	17,8	0,05	0,30	12/12
A2059G 30 kopior	25,3	0,36	1,41	12/12
A2058T 10 000 kopior	18,5	0,09	0,50	12/12
A2058T 30 kopior	25,9	0,30	1,16	12/12
A2058C 10 000 kopior	17,6	0,13	0,75	12/12
A2058C 30 kopior	25,3	0,36	1,44	12/12
A2059C 10 000 kopior	18,9	0,04	0,21	12/12
A2059C 45 kopior	24,8	0,46	1,85	12/12

För att fastställa variabiliteten inom körning jämfördes tre experiment, inställda separat av samma användare genom körning av varje mål på samma platta (**Tabell 38**). De tre experimenten visade god reproducerbarhet med variationskoefficient mellan 0,57–3,12 % för alla mål.

Tabell 38. Variabilitet inom körning				
	Genomsnittlig Cq	STDEV	% CV	Antal prover
MgPa 10 000 kopior	17,3	0,36	2,09	18/18
MgPa 30 kopior	25,9	0,81	3,12	18/18
A2058G 10 000 kopior	20,2	0,11	0,57	18/18
A2058G 36 kopior	28,0	0,65	2,31	18/18
A2059G 10 000 kopior	17,9	0,15	0,83	18/18
A2059G 30 kopior	25,8	0,38	1,46	18/18
A2058T 10 000 kopior	18,8	0,12	0,66	18/18
A2058T 30 kopior	26,8	0,38	1,41	18/18
A2058C 10 000 kopior	17,8	0,15	0,83	18/18
A2058C 30 kopior	25,5	0,36	1,41	18/18
A2059C 10 000 kopior	19,0	0,14	0,76	18/18
A2059C 45 kopior	25,0	0,42	1,66	18/18

16.2.2 Analytisk sensitivitet

ResistancePlus[®] MG-kittets analytiska sensitivitet på LC480 II fastställdes genom att köra begränsade utspädningsserier med kvantifierad syntetisk mall för *M. genitalium* MgPa och 23S rRNA-målen (A2058G, A2059G, A2058T, A2058C och A2059C). Sensitiviteten för varje mål fastställdes som antalet kopior per reaktion med ≥ 95 % detektion som visas i **Tabell 39**.

Tabell 39. Analytisk sensitivitet		
	Analytisk sensitivitet (kopior/reaktion)	
MgPa	10	
A2058G	12	
A2059G	10	
A2058T	10	
A2058C	10	
A2059C	15	

16.2.3 Analytisk specificitet

Den här studien genomfördes för att utvärdera **Resistance**Plus[®] MG-kittet när icke-målorganismer förekommer i höga koncentrationer. En panel utvärderades med 65 mikroorganismer (4 virus, 2 protozooner, 4 svampar och 55 bakterier) som representerar patogener eller flora som vanligtvis förekommer i det urogenitala systemet, eller som är nära besläktade med *M. genitalium.* Varje bakteriestam testades i koncentrationen 1 x 10⁶ genom/mL, såvida inte annat anges. Virusstammar testades i koncentrationer 1 x 10⁵ genom/mL, såvida inte annat anges. Alla andra organismer testades enligt angivna koncentrationer. Alla organismer kvantifierades med hjälp av realtids-PCR, förutom de som kvantifierades som kolonibildande enheter (CFU) eller plackbildande enheter (PFU) (**Tabell 40**). Alla mikroorganismer testades i tre exemplar. Alla mikroorganismer som testades späddes ut i negativ klinisk matris (antingen urin- eller vaginalsvabb).

Resultaten indikerade att ingen av dessa organismer genererade falskt positiva resultat i de *M. genitalium*-negativa matriserna (**Tabell 40**).

En *in silico*-analys utfördes också för att utvärdera om oligonukleotider i **Resistance**Plus[®] MG-analysen kunde amplifiera och detektera nukleinsyrasekvenser från icke-målorganismer som finns i BLAST. Inga signifikanta interaktioner detekterades.

Tabell 40. Mikroorganismer testade för analytisk specificitet									
Organism Koncentration (genom/mL)		Organism	Koncentration (genom/mL)	Organism	Koncentration (genom/mL)				
Actinomyces israelii	1 x 10 ⁶	HIV-1 [^]	1 x 10 ³	Mycoplasma pirum (2)*	1 x 10 ⁶				
Atopobium vaginae	1 x 10 ⁶	HPV typ 18 (HeLa-celler)^	1 x 10 ⁵	Mycoplasma pneumoniae (6)*	1 x 10 ⁶				
Bacterioides fragilis	1 x 10 ⁶	Klebsiella oxytoca	1 x 10 ⁶	Mycoplasma primatum	1 x 10 ⁶				
Bifidobacterium adolescentis	1 x 10 ⁶	Lactobacillus acidophilus	1 x 10 ⁶	Mycoplasma salivarium	1 x 10 ⁶				
Campylobacter jejuni	1 x 10 ⁶	Lactobacillus crispatus	1 x 10 ⁶	Neisseria gonorrhoeae	1 x 10 ⁶				
Candida albicans	1 x 10 ⁵	Lactobacillus jensenii	1 x 10 ⁶	Pentatrichomonas hominis [#]	1 x 10 ⁵				
Candida glabrata	1 x 10 ⁶	Lactobacillus vaginalis 1 x 10 ⁶		Peptostreptococcus anaerobius	1 x 10 ⁶				
Candida parapsilosis 1 x 10 ⁶		Listeria monocytogenes	1 x 10 ⁶	Prevotella bivia	1 x 10 ⁶				
Candida tropicalis	1 x 10 ⁵	Mobiluncus curtisii	us curtisii 1 x 10 ⁶ Propionibacterium		1 x 10 ⁵				
Chlamydia trachomatis	1 x 10 ⁶	Mycobacterium smegmatis 1 x 10 ⁵		Proteus mirabilis	1 x 10 ⁶				
Clostridium perfringens	1 x 10 ⁶	Mycoplasma alvi	Mycoplasma alvi 1 x 10 ⁶ Proteus		1 x 10 ⁶				
Corynebacterium genitalium	1 x 10 ⁶	Mycoplasma amphoriforme (2)*	1 x 10 ⁶	Pseudomonas aeruginosa	1 x 10 ⁶				
Enterobacter aerogenes	1 x 10 ⁶	Mycoplasma arginini	1 x 10 ⁶	Staphylococcus aureus	1 x 10 ⁶				
Enterobacter cloaceae	1 x 10 ⁶	Mycoplasma buccale	1 x 10 ⁶	Staphylococcus saprophyticus	1 x 10 ⁶				
Enterococcus fecalis	1 x 10 ⁶	Mycoplasma fermentans	1 x 10 ⁶	Streptococcus agalactiae	1 x 10 ⁶				
Fusobacterium nucleatum	1 x 10 ⁶	Mycoplasma gallisepticum	1 x 10 ⁴	Streptococcus pyogenes	1 x 10 ⁶				
Gardnerella vaginalis	1 x 10 ⁶	Mycoplasma hominis	1 x 10 ⁶	Trichomonas vaginalis [#]	1 x 10 ⁵				
Haemophilus ducreyi	1 x 10 ⁶	Mycoplasma lipohilum	1 x 10 ⁴	Ureaplasma urealyticum	1 x 10 ⁵				
Herpes simplex virus I	1 x 10 ⁶	Mycoplasma orale	1 x 10 ⁶						
Herpes simplex virus II	1 x 10 ⁶	Mycoplasma penetrans	1 x 10 ⁶						

* nummer inom parentes anger antalet stammar som testats

^ kvantifierad som PFU/mL

kvantifierad som CFU/mL

16.2.4 Potentiellt interferande substanser

En studie om interferande substanser genomfördes för att undersöka om substanser eller åkommor som kan förekomma i urin- eller vaginalsvabbprover kan påverka **Resistance**Plus[®] MG-analysens prestanda. Panelen bestod av endogena substanser såsom blod, mucin, leukocyter och läkemedel (receptbelagda och receptfria) som kan användas för att behandla urogenitala åkommor. Alla substanser utvärderades genom mätning av prestandan av Internal Control (Intern kontroll), som övervakar extraktion och realtids-PCR-hämning. Alla testprover testades i tre exemplar. Substanserna späddes ut i negativ klinisk matris (antingen urin- eller vaginalsvabb), beroende på vad som var lämpligt.

Resultaten indikerade att ingen av substanserna eller åkommorna påverkade detektion av Internal Control (Intern kontroll) eller genererade falskt positiva resultat.

Resultaten sammanfattas i Tabell 41 och Tabell 42.

Tabell 41. Potentiellt interferande substanser i urinprover							
Klass/substans	Produktnamn	Testkoncentration					
Helblod		1 % v/v					
Sperma		5,0 % v/v					
Mukus	Mucin	0,8 % w/v					
Antibiotiko	Azithromycin	1,8 mg/mL					
Antibiotika	Doxycyklin	3,6 mg/mL					
	Aspirin	40 mg/mL					
Anaigetika	Paracetamol	3,2 mg/mL					
Intravaginala hormoner		7 mg/mL Progesteron + 0,07 mg/mL Beta-estradiol					
Leukocyter		10 ⁵ celler/mL					
Albumin	Bovint serumalbumin	10 mg/mL					
Glukos		10 mg/mL					
Surt urin (pH 4,0)	Urin + N-Acetyl-L-Cystein	pH 4,0					
Alkaliskt urin (pH 9,0)	Urin + ammoniumcitrat	рН 9,0					
Bilirubin		1 mg/mL					

Tabell 42. Potentiellt interferande substanser i vaginalsvabbprover								
Klass/substans	Produktnamn	Testkoncentration						
Blod		60 % v/v						
Seminalplasma		5,0 % v/v						
Mukus	Mucin	0,8 % w/v						
	Vagisil Anti-Itch Crème (1.0 oz)	0,25 % w/v						
	K-Y Jelly (4.0 oz)	0,25 % w/v						
	Options Gynol II Vaginal Contraceptive Gel	0,25 % w/v						
	Walgreens Clotrimazole Vaginal Cream (1.5 oz)	0,25 % w/v						
Receptfria vaginala produkter och preventivmedel	Vagisil Sensitive Skin Formula Maximum Strength Anti-Itch Creme with Oatmeal (1.0 oz)	0,25 % w/v						
	Vagisil ProHydrate Natural Feel Internal Moisturizing Gel (0.2 oz x 8 pack)	0,25 % w/v						
	Vagisil Daily Intimate Deodorant Powder (8.0 oz)	0,25 % w/v						
	Summer's Eve Medicated Douche	0,25 % v/v						
Deodorant och puder	Summer's Eve Deodorant spray (2.0 oz)	0,25 % v/v						
Hemorrojdsalva	Preparation H Hemorrhoidal Cream (0.9 oz)	0,25 % w/v						
	Metronidazole Vaginal Gel, 0.75%	0,25 % w/v						
Endast receptbelagda läkemedel	Estrace [®] (estradiol vaginal cream, USP 0,01 %)	0,25 % w/v						
Leukocyter		10 ⁵ celler/mL						
Intravaginala hormoner	-	7 mg/mL Progesteron + 0,07 mg/mL Beta-estradiol						

17 Kundtjänst och teknisk service

Kontakta teknisk service för frågor om reaktionsinställning, cykliska förhållanden och annat.

Tel: +61 2 9209 4169, E-post: tech@speedx.com.au

18 Referenser

- 1. Taylor-Robinson D, Jensen JS. *Mycoplasma genitalium*: from Chrysalis to multicolored butterfly. Clin Microbiol Rev. 2011;24:498–514.
- 2. Manhart LE, Broad JM, Golden MR. Mycoplasma genitalium: should we treat and how? Clin Infect Dis. 2011 Dec;53 Suppl 3:S129-42.
- 3. Cazanave C, Manhart LE, Bébéar C. Mycoplasma genitalium, an emerging sexually transmitted pathogen. Med Mal Infect. 2012 Sep;42(9):381-92
- Jensen JS, Bradshaw CS, Tabrizi SN, Fairley CK, Hamasuna R. Azithromycin treatment failure in Mycoplasma genitaliumpositive patients with nongonococcal urethritis is associated with induced macrolide resistance. Clin Infect Dis. 2008 Dec 15;47(12):1546-53.
- Jensen JS. Kapitel 8: Protocol for the Detection of Mycoplasma genitalium by PCR from Clinical Specimens and Subsequent Detection of Macrolide Resistance-Mediating Mutations in Region V of the 23S rRNA Gene in Diagnosis of Sexually Transmitted Diseases: Methods and Protocols, Methods in Molecular Biology, vol. 903, Science+Business Media New York 2012.
- Bissessor M, Tabrizi SN, Twin J, Abdo H, Fairley CK, Chen MY, Vodstrcil LA, Jensen JS, Hocking JS, Garland SM, Bradshaw CS. Macrolide resistance and azithromycin failure in a Mycoplasma genitalium-infected cohort and response of azithromycin failures to alternative antibiotic regimens. Clin Infect Dis. 2015 Apr 15;60(8):1228-36.
- 7. Twin J, Taylor N, Garland SM, Hocking JS, Walker J, Bradshaw CS, Fairley CK, Tabrizi SN. Comparison of two Mycoplasma genitalium real-time PCR detection methodologies. J Clin Microbiol. 2011 Mar;49(3):1140-2.
- 8. Twin J, Jensen JS, Bradshaw CS, et al. Transmission and selection of macrolide resistant Mycoplasma genitalium infections detected by rapid high resolution melt analysis. PLoS One 2012; 7:e35593.
- 9. Jensen JS, Bjornelius E, Dohn B, Lidbrink P. Use of Taqman 5' nuclease real-time PCR for quantitative detection of Mycoplasma genitalium DNA in males with and without urethritis who were attendees at a sexually transmitted disease clinic. J Clin Microbiol. 2004 42:683-692.

19 Bilaga 1: LightCycler[®] 480 Instrument II

Följande information är baserad på LightCycler[®] 480 Software (version 1.5).

ResistancePlus[®] MG-kittet innehåller färger för LightCycler[®] 480 Instrument II. PlexPCR[®] Colour Compensation-kittet (kat.nr. 90001) måste köras och tillämpas för LC480 II-analys (se avsnitt 19.2). Detta kit kan erhållas på begäran.

19.1 Programmera LightCycler® 480 Instrument II (LC480 II)

Detection Format (Detektionsformat)

Skapa ett anpassat Detection Format (Detektionsformat)

Öppna Tools (Verktyg) > Detection Formats (Detektionsformat)

Skapa ett nytt detektionsformat och ge det namnet "SpeeDx PlexPCR" (kan skapas när filen för SpeeDx färgkompensation skapas) (se Figur 3).

För Filter Combination Selection (Val av filterkombination), välj följande (Excitation – Emission):

	Tabell 43. Filterkombinationer*									
LC480 II	440-488	465–510	533–580	533-610	533–640	618–660				

^ Dessa filterkombinationer är standardnamn för kanalerna

Ställ in Selected Filter Combination List (Vald filterkombinationslista) för alla kanaler som:

Melt Factor (Smältfaktor): 1

Quant Factor (Kvantfaktor): 10

Max Integration Time (sec) (Max. integrationstid (s)): 1

-Filter Combination Selection-Emission Ε 488 510 580 610 640 х Г 440 🔽 Г Г C i 465 🗆 🖻 🗖 🗖 🗖 t 498 🗌 🗌 Г Г Г а t ÷ 533 🗌 🔲 🔽 🔽 🦷 0 n 618 🗌 🗌 🔲 🔲 🔽 Clear . Selected Filter Combination List-Excitation Emission Name Melt Quant Max Integration Factor Factor Filter Filter Time (Sec) 440 488 440-488 1 10 465 510 465-510 1 10 533 580 533-580 1 10 1 533 610 533-610 1 10 533 640 533-640 1 10 618 660 618-660 1 10

Figur 3. Anpassat SpeeDx detektionsformat

Instrument Settings (Instrumentinställningar)

Skapa ett anpassat Detection Format (Detektionsformat)

Öppna Tools (Verktyg) > Instruments (Instrument)

För Instrument Settings (Instrumentinställningar) > välj Barcode Enabled (Streckkodsaktiverad)

Experiment setup (Konfigurera experiment)

Välj New Experiment (Nytt experiment)

På fliken Run Protocol (Kör protokoll)

För Detection Format (Detektionsformat) välj det anpassade formatet "SpeeDx PlexPCR" (Figur 4)

Välj Customize (Anpassa) >

Välj Integration Time Mode (Integrationstidläge) > Dynamic (Dynamiskt)

Välj följande aktiva Filter Combinations (Filterkombinationer) som visas i Tabell 44

Tabell 44. Kanaler för <i>ResistancePlus[®]</i> MG-mål								
Detektion av <i>M.</i> genitalium (MgPa)	23S rRNA-mutation	Internal Control (Intern kontroll)						
465–510	533–580	533–640						

Detection - Integrat	Format SpeeDx Plexi ion Time Mode	PCR	
Oyna	nic	O Manual	
Active	Filter Combination		
	(440-488)		
•	(465-510)		
v	(533-580)		
	(533-610)		
	(533-640)		
	(618-660)		

Figur 4. Anpassa detektionsformat

Tilldela etiketter till brunnarna på plattan för att aktivera automatisk provdetektion i analysprogrammet.

Öppna modulen Sample Editor (Provredigerare)

Välj brunn

Redigera Sample Name (Provnamn) så att det överensstämmer med etiketten som definierats i analysprogramvarans analysmodul (se avsnitt 24.4)

Prover som är märkta Prefix_Suffix (såsom visas i Tabell 45 och Figur 5) t.ex. Pa_MG

OBS! Provetiketterna är skiftlägeskänsliga. Etiketten måste överensstämma exakt med de tilldelade i körfilen.

Tabell 45. Provetiketter för analysprogramvaran								
Provtyp	Prefix (i analysprogramvaran)	_Suffix (i analysprogramvaran)	Provnamn (i LC480)					
Vanligt prov	S	_MG	S_MG					
Negativ kontroll	Ν	_MG	N_MG					
Positiv kontroll (MG, 23S rRNA mutant typ) (Pa)	Pa	_MG	Pa_MG					
Positiv kontroll (MG, 23S rRNA vildtyp) (Pb)	Pb	_MG	Pb_MG					

Pos	Filter combination	Color	Repl Of	Sample Name
A12	465-510 (465-510)			S_MG
A12	533-580 (533-580)			S_MG
A12	533-640 (533-640)			S_MG
B12	465-510 (465-510)			Pa_MG
B12	533-580 (533-580)			Pa_MG
B12	533-640 (533-640)			Pa_MG
C12	465-510 (465-510)			Pb_MG
C12	533-580 (533-580)			Pb_MG
C12	533-640 (533-640)			Pb_MG
G8	465-510 (465-510)			N_MG
G8	533-580 (533-580)			N_MG
G8	533-640 (533-640)			N_MG

Figur 5. Provredigerare – Tilldela etiketter till brunnar

Ställ in Reaction Volume (Reaktionsvolym) > 20 µL Skapa följande program

(visas mer detaljerat i Figur 6 - Figur 9):

Tabell 46. Termocyklingsprogram								
Program name (Programnamn)	Cycles (cykler)	Target °C (Mål-C)	Hold (Pausad)	Ramp rate (Ramphastighet) (°C/s) [≭]				
Polymerase activation (Polymerasaktivering)	1	95 °C	2 min	4,4				
Touch down cycling (Nedåtgående cykling) ⁵ :	10	95 °C	5 s	4,4				
Step down (Gå ned) -0,5 °C/cykel	10	61 °C–56,5 °C⁵	30 s	2,2				
Quantification cycling (Kvantifieringscykling)*:	40	95 °C	5 s	4,4				
Acquisition/Detection (Insamling/detektering)	40	52 °C⁺	40 s	2,2				
Cooling (Kylning)	1	40 °C	30 s	2,2				

[#] Standardramphastighet (96-brunnsplatta)

^o Stegstorlek: -0,5 °C/cykel, S-mål: 56 °C

* Analysläge: kvantifiering, Insamlingsläge: enkelt

SE

Figur 6. Termocyklingsprogram – Polymerasaktivering

🧊 LightCycle	r® 480 Software release 1.5.1.62 SP2		—
Instrument: Window:	30231 / Not Connected		Database: Research Database (Research)
Experi-	Run Protocol	Data	Run Notes
Subset	Detection Format SpeeDx PlexPCR Color Comp ID L	Customize Block Size	96 Plate ID Reaction Volume 20 🛨
Sample Editor	Program Name Polymerase activation	Programs	Cycles Analysis Mode 1 ⊕None ▼
Analysis	Cooling		10 None
Report		(*	
Sum.	Target (*C) Acquisition Mode H	Porprietase acuvation temperature targets old (hh:mm:ss) Ramp Rate (°C/s) Acquisitions (00 +4.4 +	(per °C) Sec Target (°C) Step Size (°C) Step Delay (cycles)
			$\overline{\otimes}$

Figur 7. Termocyklingsprogram – Nedåtgående cykling

Figur 8. Termocyklingsprogram – Kvantifieringscykling

LightCycle	r® 480	Software releas	e 1.5.1.62	SP2										i ×
Instrument:	302	31 / Not Conn	ected					Dat	abase: R	Research D	atabase	(Research)		
Window:	Ne	w Experiment	t				*	Use	r: S	Speedx				Hoche
Experi-			Run P	rotocol		Data		-		Run Not	es			<u>5</u>]]
ment	- Setu Detec	p ction Format	SpeeD?	PlexPCR		• Customize	Block Size	96	Plate I		Re	eaction Volume	- ÷	
Subset Editor	Color	Comp ID			Lot No			Test I	D					0>
\equiv						Programs								
Sample	\sim	Program N	ame								Cycles	Analysis Mo	de	무
Editor	A	Polymerase	activatio	n						1	-	None	-	22
		Touchdown	cycling							10	1	None	*	H
Analysis	O	 Quantification 	on cyclin	9						40		Quantification	•	
	\geq	Cooling								1		None	-	
Report	~													
					Quant	ification cycling Temp	eraturo Tarno	ote						
Sum.	\sim	Target	(°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisition	ns (per °C)	Sec Tar	get (°C)	Step Size	e (°C) Step Delay	(cycles)	
	\oplus	95		None	+ 00.00.05				0	10				€>
	3	52		Single	00:00:40	: 22			0	10		20	-	$\mathbf{\nabla}$
	Θ				1					, line i				
	V													O

Figur 9. Termocyklingsprogram – Kylning

> Start Run (Starta körning)

Exportera en .ixo-fil när cyklingsprogrammet har avslutats för analys i ResistancePlus® MG (LC480)-analysprogramvaran.

Välj Export (Exportera)

Spara på en lätt identifierbar plats

19.2 Colour Compensation (Färgkompensation) för LightCycler[®] 480 Instrument II

OBS! *PlexPCR*[®] Colour Compensation-kittet (kat.nr 90001) måste köras och tillämpas för LC480 II-analys. Detta kit kan erhållas på begäran.

För analys med hjälp av programmet måste Sample Name (Provnamn) på färgkompensationsreaktionerna märkas som visas i

Tabell 47.

Exportera en .ixo-fil när cyklingsprogrammet har avslutats för analys i ResistancePlus® MG (LC480)-analysprogramvaran.

Välj Export (Exportera)

Spara på en lätt identifierbar plats med namnet "SpeeDx PlexPCR"

Tabell 47. Provnamn för färgkompensationsreaktioner för analysprogramvaran								
Reaktioner								
BLANK (TOM) 488- blandning blandning) 510 mix (510- blandning) (580- blandning) 610 mix 640 mix 660 mix (660- blandning) blandning) blandning) blandning)								
Dominant Channel (Dominant kanal)	Water (Vatten)	440-488	465–510	533–580	533-610	533–640	618–660	
Sample Name (Provnamn)	BLANK (TOM)	440-488	465–510	533–580	533-610	533–640	618–660	

19.3 Tolkning av resultat

ResistancePlus[®] MG (LC480)-analysprogramvaran krävs för tolkning av data. Analysprogramvaran kan erhållas på begäran. Kontakta <u>tech@speedx.com.au</u> för mer information.

Se avsnitt 24 för instruktioner om hur man använder ResistancePlus® MG (LC480)-analysprogramvaran.

20 Bilaga 2: cobas z 480 analyser

Följande information baseras på cobas z 480 analyser Software (LightCycler 480 SW UDF 2.1.0). Kontakta din Roche-representant för hjälp att komma åt UDF-programvaran på cobas z 480 analyser.

ResistancePlus[®] MG -kittet innehåller färger för cobas z 480 analyser. *PlexPCR*[®] Colour Compensation-kittet (kat.nr. 90001) måste köras och tillämpas för z 480-analys (se **avsnitt 20.2**). Detta kit kan erhållas på begäran.

20.1 Programmering av cobas z 480 analyzer

Detection Format (Detektionsformat)

Skapa ett anpassat Detection Format (Detektionsformat)

Öppna Tools (Verktyg) > Detection Formats (Detektionsformat)

Skapa ett nytt detektionsformat och ge det namnet "SpeeDx PlexPCR" (kan skapas när filen för SpeeDx färgkompensation skapas) (se Figur 10).

För Filter Combination Selection (Val av filterkombination), välj följande (Excitation – Emission):

	Tabell 48. Filterkombinationer*							
z 480	465–510	540–580	540–610	540–645	610–670			

^ Dessa filterkombinationer är standardnamn för kanalerna

Ställ in Selected Filter Combination List (Vald filterkombinationslista) för alla kanaler som:

Melt Factor (Smältfaktor): 1

Quant Factor (Kvantfaktor): 10

Max Integration Time (sec) (Max. integrationstid (s)): 1

-Filte	-Filter Combination Selection											
Emission												
E x	465	510 IT	580 Г	610 Г	645 Г	670 Г	700 Г					
i	498		Г	Г	Г	Г	Г					
a	540		ঘ	ঘ	ঘ	Г	Г					
i	610				Г	ন	Г					
n	680						Г					
											Clear	
- Sel	ected	Filte	er Co	mbin	ation	l ist-					Clear	
- Seli Exc F	ected citatio Filter	Filte	er Co missi Filte	mbin on r	ation	List- lame		Melt Factor	Quant Factor	Max T	Clear c Integrat Time (Sec	ion
- Seli Exc F	ected citatio Filter 465	Filte	er Co missi Filte 510	mbin on r	ation N	List- lame		Melt Factor	Quant Factor 10	Max T	Clear c Integrat Time (Sec)	ion)
- Seli Exc F	ected citatio Filter 465 540	Filte	er Co missi Filte 510 580	mbin on r 4	ation N 165-5 540-5	List- lame		Melt Factor 1 1	Quant Factor 10 10	Max T 1	Clear c Integrat Time (Sec)	ion)
- Seli Exc F	ected citatio Filter 465 540 540	Filte	Filte	mbin on r 4	ation N 65-5 540-5 540-6	List- lame		Melt Factor 1 1 1	Quant Factor 10 10 10	Max T 1 1 1	Clear c Integrat ime (Sec	ion)
- Sele Exc F	ected citatio Filter 465 540 540 540	Filte	Filte 510 580 610 645	mbin on r 4	ation N 65-5 540-5 540-6 540-6	List- lame		Melt Factor 1 1 1 1	Quant Factor 10 10 10 10	Max T 1 1 1	Clear k Integrat ime (Sec	ion)
- Seli	ected citatio Filter 465 540 540 540 610	Filte	er Co missi Filte 510 580 610 645 670	mbin on r 4 s s	ation N 65-5 40-5 40-6 40-6 510-6	List- lame		Melt Factor 1 1 1 1 1	Quant Factor 10 10 10 10 10	Max T 1 1 1 1	Clear k Integrat ïme (Sec	ion

Figur 10. Anpassat SpeeDx detektionsformat

Instrument Settings (Instrumentinställningar)

Skapa ett anpassat Detection Format (Detektionsformat)

Öppna Tools (Verktyg) > Instruments (Instrument)

För Instrument Settings (Instrumentinställningar) > välj Barcode Enabled (Streckkodsaktiverad)

Experiment setup (Konfigurera experiment)

Välj New Experiment (Nytt experiment)

På fliken Run Protocol (Kör protokoll)

För Detection Format (Detektionsformat) välj det anpassade formatet "SpeeDx PlexPCR" (Figur 11)

Välj Customize (Anpassa) >

Välj Integration Time Mode (Integrationstidläge) > Dynamic (Dynamiskt)

Välj följande aktiva Filter Combinations (Filterkombinationer) som visas i Tabell 49

Tabell 49. Kanaler för <i>ResistancePlus[®]</i> MG-mål						
Detektion av <i>M.</i> genitalium (MgPa)	23S rRNA-mutation	Internal Control (Intern kontroll)				
465–510	540–580	540–645				

Figur 11. Anpassa detektionsformat

De	Detection Formats							
D	etection Forn Integration T ● Dynamic	nat SpeeDx PlexPCR ime Mode O Manual						
	Active	Filter Combination						
	~	465-510 (465-510)						
	~	540-580 (540-580)						
		540-610 (540-610)						
	~	540-645 (540-645)						
►		610-670 (610-670)						

Tilldela etiketter till brunnarna på plattan för att aktivera automatisk provdetektion i analysprogrammet.

Öppna modulen Sample Editor (Provredigerare)

Välj brunn

Redigera Sample Name (Provnamn) så att det överensstämmer med etiketten som definierats i analysprogramvarans analysmodul (se avsnitt 24.4)

Proven är märkta Prefix_Suffix (såsom visas i Tabell 50 och

Figur 12) t.ex. Pa_MG

OBS! Provetiketterna är skiftlägeskänsliga. Etiketten måste överensstämma exakt med de tilldelade i körfilen.

Tabell 50. Provetiketter för analysprogramvaran								
Provtyp	Prefix (i analysprogramvaran)	_Suffix (i analysprogramvaran)	Provnamn (i z 480)					
Vanligt prov	S	_MG	S_MG					
Negativ kontroll	Ν	_MG	N_MG					
Positiv kontroll (MG, 23S rRNA mutant typ) (Pa)	Pa	_MG	Pa_MG					
Positiv kontroll (MG, 23S rRNA vildtyp) (Pb)	Pb	_MG	Pb_MG					

Figur 12. Provredigerare – Tilldela etiketter till brunnar

Pos	Filter combination	Color	Repl Of	Sample Name	Quantification Sample Type
A12	465-510 (465			S_MG	Unknown
A12	540-580 (540			S_MG	Unknown
A12	540-645 (540			S_MG	Unknown
B12	465-510 (465			Pa_MG	Unknown
B12	540-580 (540			Pa_MG	Unknown
B12	540-645 (540			Pa_MG	Unknown
C12	465-510 (465			Pb_MG	Unknown
C12	540-580 (540			Pb_MG	Unknown
C12	540-645 (540			Pb_MG	Unknown
D12	465-510 (465			N_MG	Unknown
D12	540-580 (540			N_MG	Unknown
D12	540-645 (540			N_MG	Unknown

Ställ in Reaction Volume (Reaktionsvolym) > 20 μ L

Skapa följande program (visas mer detaljerat i Figur 13 – Figur 16):

Tabell 51. Termocyklingsprogram								
Program name (Programnamn)	Cycles (cykler)	Target °C (Mål-C)	Hold (Pausad)	Ramp rate (Ramphastighet) (°C/s) [≠]				
Polymerase activation (Polymerasaktivering)	1	95 °C	2 min	4,4				
Touch down cycling (Nedåtgående cykling)⁵:	10	95 °C	5 s	4,4				
Step down (Gå ned) -0,5 °C/cykel	10	61 °C–56,5 °C⁵	30 s	2,2				
Quantification cycling (Kvantifieringscykling)*:	10	95 °C	5 s	4,4				
Acquisition/Detection (Insamling/detektering)	40	52 °C⁺	40 s	2,2				
Cooling (Kylning)	1	40 °C	30 s	2,2				

Standardramphastighet (96-brunnsplatta)

⁸ Stegstorlek: -0,5 °C/cykel, S-mål: 56 °C

* Analysläge: kvantifiering, Insamlingsläge: enkelt

Figur 13. Termocyklingsprogram – Polymerasaktivering

LightCycl	er® 480	SW - User Defined Wor	rkflow for cobas z 480						-) ×
Instrument:	5473	5 / Not Connected				Da	tabase: June2020 (Research)			Racha
Window:	New	/ Experiment				- Us	er: Speedx				nocine
Experi-		Run I	Protocol		Data		Run M	lotes			2 D
ment	– Setup Detect	tion Format Speel	Dx PlexPCR		Customize	Block Size 96	Plate ID	Re	action Volume 20	÷	
Subset Editor	Color	Comp ID		Lot No		Te	st ID				୲ᢓ
					Programs						
Sample		Program Name						Cycles	Analysis Mode		
	A	Polymerase act	ivation					1 🕂	None	-	[문문]
		Touchdown cycl	.ing					10	None		$\overline{\frown}$
Analysis	Θ	Cooling	cycling					1	None	-	(↔)
										_	
Report	\mathbf{v}										
				Polyr	nerase activation Temp	erature Targets					
[Sum		Target (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitions (per °	C) Sec Target (°C)	Step Size	e (°C) Step Delay (cy	cles)	
Sum.	A		* No						* .		
		95	None	▼ 00:02:00	-4.4 -	1	-0	10	-0		\sim
	Θ										
											\otimes

Figur 15. Termocyklingsprogram – Kvantifieringscykling

LightCycl	er® 480	SW - User Defined Wo	urkflow for cobas z 480						-	\Box ×
Instrument:	5473	5 / Not Connected				Dat	tabase: June2020 (I	Research)		Reals
Window:	Nev	v Experiment				▼ Use	er: Speedx			nocile
Experi-		Run	Protocol		Data		Run N	otes		- 5
ment	- Setup Detec	tion Format Spee	Dx PlexPCR		Customize	Block Size 96	Plate ID	Reaction	Volume 20 🚊	
Subset Editor	Color	Comp ID		Lot No		Tes	it ID			୲୲ୖ
\equiv					Programs					
Sample	\frown	Program Name						Cycles	Analysis Mode	
Eulior	A	Polymerase ac	tivation					• None		- [동품]
	S.	Touchdown cyc	ling					10 None		
Analysis	ΘĽ	Cooling	n cycling					None	Silication	- ({})
		coording						•		
Report	$\mathbf{\Sigma}$									
		T====+ (%C)	Annulation Made	Quantif	Cation cycling Tempe	rature largets	S C T+ (%C)	Ctore Class (9C)	Chan Dalay (avala	
Sum.		Target (°C)	Acquisition Mode	noid (nn:mm:ss)	Ramp Rate ("C/s)	Acquisitions (per 'C	.) Sec Target (*C)	Step Size (°C)	Step Delay (cycles	"
\square	(\mathbf{D})	95	* None	• 00:00:05	4.4		÷ o ÷	o 📫	0	
1		52	Single	00:00:40	2.2		0 ÷	o ÷	0	
	\checkmark									

Figur 16. Termocyklingsprogram – Kylning

> Start Run (Starta körning)

Exportera en .ixo-fil när cyklingsprogrammet har avslutats för analys i ResistancePlus® MG (z480)-analysprogramvara.

Välj Export (Exportera)

Spara på en lätt identifierbar plats

20.2 Färgkompensation för cobas z 480 analyser

OBS! *PlexPCR*[®] Colour Compensation-kittet (kat.nr 90001) måste köras och tillämpas för z480 II-analys. Detta kit kan erhållas på begäran.

För analys med hjälp av programmet måste Sample Name (Provnamn) på färgkompensationsreaktionerna märkas som visas i

Tabell 52.

Exportera en .ixo-fil när cyklingsprogrammet har avslutats för analys i *ResistancePlus®* MG (z480)-analysprogramvara.

Välj Export (Exportera)

Spara på en lätt identifierbar plats med namnet "SpeeDx PlexPCR"

Tabell 52. Provnamn för färgkompensationsreaktioner för analysprogramvaran							
		Reak	tioner				
	BLANK (TOM)	510 mix (510- blandning)	580 mix (580- blandning)	610 mix (610- blandning)	640 mix (640- blandning)	660 mix (660- blandning)	
Dominant Channel (Dominant kanal)	Water (Vatten)	465–510	540–580	540–610	540–645	610–670	
Sample Name (Provnamn)	BLANK (TOM)	465–510	540–580	540–610	540–645	610–670	

20.3 Tolkning av resultat

ResistancePlus[®] MG (z480)-analysprogramvaran krävs för tolkning av data. Analysprogramvaran kan erhållas på begäran. Kontakta <u>tech@speedx.com.au</u> för mer information.

Se avsnitt 24 för instruktioner om hur man använder *ResistancePlus®* MG (z480)-analysprogramvaran.

21 Bilaga 3: Applied Biosystems[®] 7500 Fast

Följande information baseras på 7500 programvara v2.3.

ResistancePlus[®] MG₍₅₅₀₎-kittet innehåller färger för Applied Biosystems[®] (ABI) 7500 Fast. Standardfärgkalibreringar används för alla kanaler. Anpassad kalibrering krävs inte.

21.1 Programmering av Applied Biosystems[®] 7500 Fast

Välj Advanced Setup (Avancerad konfiguration)

I Setup (Konfiguration) > öppna Experiment Properties (Experimentegenskaper) och välj följande

Name the experiment (Namnge experimentet)

Instrument > 7500 Fast (96 Wells) (7500 Fast (96 brunnar))

Type of experiment (Typ av experiment) > Quantitation – Standard Curve (Kvantifiering – standardkurva)

Reagents (Reagenser) > Other (Övriga)

Ramp Speed (Ramphastighet) > Standard

| Setup (Konfiguration) > öppna Plate Setup (Plattkonfiguration)

Under fliken Define Targets and Samples (Definiera mål och prov) >

Define Targets (Definiera mål) enligt nedan (definiera färger vid behov)

Tabell 53. Define Targets (Definiera mål)						
Target name (Målnamn)	Reporter (rapporterare)	Quencher				
MgPa	FAM	None (ingen)				
23S rRNA-mutation	JOE	None (ingen)				
IC	TAMRA	None (ingen)				

Tilldela etiketter till brunnarna på plattan för att aktivera automatisk provdetektion i analysprogrammet

| Setup (Konfiguration) > öppna Plate Setup (Plattkonfiguration)

Under fliken Define Targets and Samples (Definiera mål och prov) >

Define Samples (Definiera prov)

Redigera Sample Name (Provnamn) så att det överensstämmer med etiketterna som definierats i analysprogramvarans analysmodul (se avsnitt 24.4)

Prover som är märkta Prefix_Suffix (såsom visas i Tabell 54 och Figur 17) t.ex. Pa_MG

OBS! Provetiketterna är skiftlägeskänsliga. Etiketten måste överensstämma exakt med de tilldelade i körfilen.

Tabell 54. Provetiketter för analysprogramvaran								
Provtyp	Prefix (i analysprogramvaran)	_Suffix (i analysprogramvaran)	Provnamn (i 7500 Fast)					
Vanligt prov	S	_MG	S_MG					
Negativ kontroll	Ν	_MG	N_MG					
Positiv kontroll (MG, 23S rRNA mutant typ) (Pa)	Pa	_MG	Pa_MG					
Positiv kontroll (MG, 23S rRNA vildtyp) (Pb)	Pb	_MG	Pb_MG					

Figur 17. Provredigerare – Tilldela etiketter till brunnar

Define Samples	
Add New Sample	Add Saved Sample Save Sample Delete Sample
Sample Name	
Pb_MG	
S_MG	
Pa_MG	
N_MG	

I fliken Assign Targets and Samples (Tilldela mål och prover) >

Välj brunnar och tilldela mål och prov till de valda brunnarna

Välj Passive reference (Passiv referens) > None (Ingen)

| Setup (Konfiguration) > öppna Run Method (Kör metod)

Ställ in Reaction Volume Per Well (Reaktionsvolym per brunn) > 20 µL

Skapa följande program (visas mer detaljerat i Graphical View (Grafisk vy) (Figur 18 och Figur 19) och Tabular View (Tabellvy) (Figur 20):

Tabell 55. Termocyklingsprogram					
Program name (Programnamn)	Cycles (cykler)	Target °C (Mål-C)	Hold (Pausad)	Ramp [≠]	
Polymerase activation (Polymerasaktivering)	1	95 °C	2 min	100 %	
Touch down cycling (Nedåtgående cykling):	10	95 °C	5 s	100 %	
Step down (Gå ned) -0,5 °C/cykel ^δ		61 °C–56,5 °C⁵	30 s	100 %	
Quantification cycling (Kvantifieringscykling)*:	40	95 °C	5 s	100 %	
Acquisition/Detection (Insamling/detektering)		52 °C⁺	40 s	100 %	

Standard ramphastighet

⁶ Enable AutoDelta (Aktivera AutoDelta): -0,5 °C/cykel

+ Samla in data pausad

Figur 18. Kör metod – Graphical View (Grafisk vy)

AutoDelta Settings	
AutoDelta Settings For Cycling Stage	
AutoDelta Temperature: - 🗸 0.50 🚖	
Legal ∆ Temperature Range: -6.33 to 4.32	
AutoDelta Time: + 💌 00:00 💭	
Starting Cycle: 2	
Save Setting Cancel	

Figur 20. Kör metod – Tabular View (Tabellvy)

	Holding Stage	Cycling) Stage	Cycling	j Stage
		Number of Cyr I Enable Starting Cyc	cles: 10 🗇 AutoDelta de: 2 🌩	Number of Cy Enable Starting Cyc	cles: 40 🗇 AutoDelta de: 2 🐳
Ramp Rate (%):	100.0	100.0	100.0	100.0	100.0
Temperature (°C):	95.0	95.0	61.0	95.0	52.0
Time:	02:00	00:05	00:30	00:05	00:40
AutoDelta Temp:		+ • 0.00	- • 0.50 -		
AutoDelta Time:		+ • 00:00	+ • 00:00		
Collect Data on Ramp:			The second secon		
Collect Data on Hold:		m.	ш. Э́	۳.	
	Step 1	Step 1	Step 2	Step 1	Step 2

I Setup (Konfiguration) > öppna Run Method (Kör metod)

Välj Start Run (Starta körning)

21.2 Tolkning av resultat

ResistancePlus[®] MG (7500)-analysprogramvaran krävs för tolkning av data. Analysprogramvaran kan erhållas på begäran. Kontakta <u>tech@speedx.com.au</u> för mer information.

Se avsnitt 24 för instruktioner om hur man använder *ResistancePlus®* MG (7500)-analysprogramvaran.

22 Bilaga 4: Applied Biosystems 7500 Fast Dx

Följande information baseras på SDS-programvara v1.4.1 för 7500 Fast Dx.

ResistancePlus[®] MG₍₅₅₀₎-kittet innehåller färger för Applied Biosystems[®] (ABI) 7500 Fast Dx. Standardfärgkalibreringar används för alla kanaler. Anpassad kalibrering krävs inte.

22.1 Programmering av Applied Biosystems[®] 7500 Fast Dx

Välj Create New Document (Skapa nytt dokument)

I New Document Wizard (Guide för nytt dokument), välj följande (Figur 21):

Assay (Analys) > Standard Curve (Absolute Quantification) (Standardkurva (absolut kvantifiering))

Container (Behållare) > 96-Well Clear (96-brunn klar)

Template (Mall) > Blank document (Tomt dokument)

Run mode (Körläge) > Standard 7500

Operator (Användare) > Ange användarens namn

Comments (Kommentarer) > Ange eventuella kommentarer eller anteckningar för körfilen

Plate Name (Plattnamn) > Ge körfilen ett unikt namn

Välj Next (Nästa)

Figur 21. Fönstret New Document Wizard (Guide för nytt dokument)

Assav:	Standard Curve (Absolute Quantitation)	-	[
Container	96-Well Clear	•	ſ	
Template:	Plank Document		Browse	
remplate.			biowse	
Run Mode:	Standard 7500	-		
Operator:				
Comments:	SDS v1.4.1			~
				\sim

| Select Detectors (Välj detektorer) > välj New Detector (Ny detektor)

Definiera detektorer enligt nedan (definiera färger vid behov) (så som visas i Tabell 56

och Figur 22)

Tabell 56. Definiera detektorer						
Detektorer	Detektornamn	Rapporterarfärg	Quencher			
Detektor 1	MgPa	FAM	None (ingen)			
Detektor 2	23S rRNA-mutation	JOE	None (ingen)			
Detektor 3	IC	TAMRA	None (ingen)			

Välj **OK**

Figur 22. Fönstret Ny detektor

lew Detector				×
Name:				
Description:				
Reporter Dye:	FAM		•	
Quencher Dye:	(none)		•	
Color:				
Notes:				
Create Ar	other	OK	Cancel	

Välj detektorer (Figur 23)

Välj detektorer och klicka på Add (Lägg till) för att lägga till dem i dokumentet Välj Passive reference (Passiv referens) > None (Ingen)

New Document Wiza	rd					×
Select Detectors Select the detectors y	you will be using	in the docume	ent.			
Find:		•	•	Pas	ssive Reference: (none)	•
Detector Name	Description	Reporter	Quencher		Detectors in Document	
MgPa		FAM	(none)		MgPa	
23S rRNA mutation		JOE	(none)		23S rRNA mutation	
IC		TAMRA	(none)	Add >>		
<			>			
New Detector						
			< E	Back Next	t > Finish	Cancel

Figur 23. Fönstret Select Detectors (Välj detektorer)

I Set Up (Konfigurera) provplatta >

Välj brunnar och tilldela 4 detektorer till de valda brunnarna

- MgPa
- 23S rRNA-mutation
- IC

Välj Next (Nästa)

Tilldela etiketter till brunnarna på plattan för att aktivera automatisk provdetektion i analysprogrammet.

Under fliken Setup (Konfigurera) > Plate (Platta)

Högerklicka på brunnen och välj Well Inspector (Brunnsinspektör) > ange Sample Name (Provnamn)

Redigera **Sample Name (Provnamn)** så att det överensstämmer med etiketten som definierats i analysprogramvarans analysmodul (se **avsnitt 24.4**)

Prover som är märkta Prefix_Suffix (såsom visas i Tabell 57 and Figur 24) t.ex. Pb_MG

OBS! Provetiketterna är skiftlägeskänsliga. Etiketten måste överensstämma exakt med de tilldelade i körfilen.

Tabell 57. Provetiketter för analysprogramvaran						
Provtyp	Prefix_ (i analysprogramvaran)	_Suffix (i analysprogramvaran)	Provnamn (i 7500 Fast Dx)			
Vanligt prov	S	_MG	S_MG			
Negativ kontroll	Ν	_MG	N_MG			
Positiv kontroll (MG, 23S rRNA mutant typ) (Pa)	Ра	_MG	Pa_MG			
Positiv kontroll (MG, 23S rRNA vildtyp) (Pb)	Pb	_MG	Pb_MG			

Figur 24. Setup plate view (Konfigurera plattvy) - Assigning nametags to wells (Tilldela brunnar etiketter)

Välj Next (Nästa)

På fliken Instrument

I rutan Settings (Inställningar)

För Sample Volume (Provvolym) (µL): ange 20 µL

Skapa följande termocyklingsprotokoll(Tabell 58, Figur 25 och Figur 26)

Tabell 58. Termocyklingsprotokoll					
Program name (Programnamn)	Cycles (cykler)	Target °C (Mål-C)	Hold (Pausad)	Ramp [≠]	
Polymerase activation (Polymerasaktivering)	1	95 °C	2 min	100 %	
Touch down cycling (Nedåtgående cykling):	10	95 °C	5 s	100 %	
Step down (Gå ned) -0,5 °C/cykel ^ö		61 °C–56,5 °C⁵	30 s	100 %	
Quantification cycling (Kvantifieringscykling)*:	40	95 °C	5 s	100 %	
Acquisition/Detection (Insamling/detektering)		52 °C⁺	40 s	100 %	

Standard ramphastighet

^o (Aktivera AutoDelta):-0,5 °C/cykel

+ Samla in data pausad

Figur 26. Termocyklingsprotokoll – Automatisk ökning

22.2 Tolkning av resultat

ResistancePlus[®]MG (7500)-analysprogramvaran krävs för tolkning av data. Analysprogramvaran kan erhållas på begäran. Kontakta <u>tech@speedx.com.au</u> för mer information.

Se avsnitt 24 för instruktioner om hur man använder ResistancePlus® MG (7500)-analysprogramvaran.

23 Bilaga 5: Bio-Rad CFX96[™] Dx och CFX96 Touch[™] Real-Time PCR System

Den följande informationen baseras på Bio-Rad CFX Manager v3.1

The *ResistancePlus*[®] MG₍₆₇₅₎-kittet innehåller färger för CFX96 Real-Time PCR System. Standardfärgkalibreringar används för alla kanaler. Anpassad kalibrering krävs inte.

23.1 Programming the CFX96[™] Dx och CFX96 Touch[™] Real-time PCR System

Välj View (Vy) > öppna Run Setup (Körkonfiguration)

I fliken Run Setup (Körkonfiguration) > Protocol (Protokoll) > Välj Create New (Skapa nytt)

| Protocol Editor (Protokollredigerare) (se: Figur 27):

Ställ in Sample Volume (Provvolym) > 20 µL

Skapa följande termocyklingsprogram och spara som "SpeeDx PCR". Detta protokoll kan väljas för framtida körningar.

For Touch down cycling (Nedåtgående cykling) väljer du steg 3 och därefter **Step options (Stegalternativ)** > Increment (Ökning): -0.5 °C/cykel (visas mer detaljerat i **Figur 28**).

Tabell 59. Termocyklingsprogram					
Program name (Programnamn)	Cycles (cykler)	Target °C (Mål-C)	Hold (Pausad)		
Polymerase activation (Polymerasaktivering)	1	95 °C	2 min		
Touch down cycling (Nedåtgående cykling) ^õ :	10	95 °C	5 s		
Step down (Gå ned) -0,5 °C/cykel		61 °C–56,5 °C ^δ	30 s		
Quantification cycling (Kyantifieringscykling) ⁺ :	40	95 °C	5 s		
Acquisition/Detection (Insamling/detektering)	40	52 °C⁺	40 s		

⁵ Step options (Stegalternativ) > Ökning: -0,5 °C/cykel

⁺ Lägg till plattavläsning till steg

Figur 27. Thermocycling Protocol (Termocykelprotokoll) – Graphical view (Grafisk vy)

Protocol Editor - New	X
File Settings Tools	
📑 🚔 Insert Step After	sample Volume 20 µl Est. Run Time 01:26:00 ?
1 2	3 4 5 6 7
95.0 C 95.0 C 2:00 0:05	61.0 C G 0.05 52.0 C C 0.40 F D D D D D D D D D D D D D D D D D D
****	9 x 39 x
Insert Step	1 95.0 C for 2:00 → 2 95.0 C for 0:05 3 61.0 C for 0:30 Decrement temperature by -0.5 C per cycle 4 GOTO 2 , 9 more times
Insert GOTO	→ 5 95.0 C for 0:05
	+ Plate Read
insert Melt Curve	7 GOTO 5 , 39 more times
Remove Plate Read	
Step Options	
Delete Step]
	OK Cancel

Figur 28. Step Options (Stegalternativ)

Step Options				×
Step 3			(Gradient
	Plate R	lead	A	
Temperature	61.0	°C	В	
Gradient		°C	С	
Increment	-0.5	°C/cyde	D	
Ramp Rate		°C/sec	E	
Time	0:30	sec/cycle	F	
Extend		sec/cycle	G	_
	Beep	1	H	
			01/	0.1
			OK	Cancel

I fliken Run Setup (Körkonfiguration) > Plate (Platta)

Välj Create New (Skapa ny)

Välj Settings (Inställningar) > Plate Type (Plattyp) > välj BR Clear (BR klar)

Ställ in Scan mode (Skanningsläge) > All channels (Alla kanaler)

Välj Fluorophores (Fluoroforer) > FAM, HEX, Quasar 705 (se Tabell 60)

Välj brunnar som innehåller prover och tilldela Sample Type (Provtyp) och kontrollera Load (Ladda) avseende fluoroforer (FAM, HEX, Quasar 705)

Save plate (Spara platta)

Tabell 60. Kanaler för <i>ResistancePlus[®]</i> MG ₍₆₇₅₎ -mål				
Detektion av M. 23S rRNA-mutation Internal Control (Intern genitalium (MgPa) kontroll)				
FAM	HEX	Quasar 705		

På fliken Run Setup (Körkonfiguration) > Start Run (Starta körning)

Välj block

Start Run (Starta körning)

Tilldela etiketter till brunnarna på plattan för att aktivera automatisk provdetektion i analysprogrammet.

Öppna modulen Plate Setup (Plattkonfiguration)

Välj brunn

Redigera **Sample Name (Provnamn)** så att det överensstämmer med etiketten som definierats i analysprogramvarans analysmodul (se **avsnitt 24.4**)

Prover som är märkta Prefix_Suffix (såsom visas i Tabell 61 och Figur 29) t.ex. Pb_MG

OBS! Provetiketterna är skiftlägeskänsliga. Etiketten måste överensstämma exakt med de tilldelade i körfilen.

Tabell 61. Provetiketter för analysprogramvaran					
Provtyp	Prefix_ (i analysprogramvaran)	Suffix (i analysprogramvaran)	Provnamn (i CFX96)		
Vanligt prov	S	_MG	S_MG		
Negativ kontroll	Ν	_MG	N_MG		
Positiv kontroll (MG, 23S rRNA mutant typ) (Pa)	Ра	_MG	Pa_MG		
Positiv kontroll (MG, 23S rRNA vildtyp) (Pb)	Pb	_MG	Pb_MG		

	1	2	3
А	Unk FAM HEX Ouasar 705 S MG		
В	Unk FAM HEX Ouasar 705 Pa MG		
с	Unk FAM HEX Ouasar 705 Pb MG		
D	Unk FAM HEX Ouasar 705 N MG		

23.2 Tolkning av resultat

ResistancePlus[®] MG (CFX)-analysprogramvaran krävs för tolkning av data. Analysprogramvaran kan erhållas på begäran. Kontakta tech@speedx.com.au för mer information.

Se avsnitt 24 för instruktioner om hur du använder ResistancePlus® MG (CFX)-analysprogramvaran.

24 Bilaga A: Tolkning av resultat

Resistance*Plus*[®] MG-analysprogramvaran krävs för tolkning av data. Även om **Plex***Prime*[®]-primrar erbjuder högre specificitet än andra allelspecifika primrar, kan viss icke-specifik amplifikation från 23S rRNA-mutantanalysen ses i prover som innehåller höga koncentrationer av *M. genitalium* vildtyp 23S rRNA. **Resistance***Plus*[®] MG-analysprogramvaran tolkar data från amplifieringsresultat automatiskt och effektiviserar arbetsflödet.

Se **Tabell 62** för lämplig analysprogramvara för varje realtids-PCR-instrument. Analysprogramvaran kan erhållas på begäran. Kontakta <u>tech@speedx.com.au</u> för mer information.

Tabell 62. ResistancePlus [®] MG-analysprogramvara					
Kat.nr	Analysprogramvara*	Realtids-PCR-instrument			
99003	Resistance Plus [®] MG (LC480)	LC480 II			
99018	Resistance Plus [®] MG (z480)	z 480			
99002	Resistance Plus [®] MG (7500)	7500 Fast och 7500 Fast Dx			
99008	ResistancePlus [®] MG (CFX)	CFX96 Dx och CFX96 Touch			
99023	REFLEX ResistancePlus®MG (LC480)	LC480 II			
99024	REFLEX ResistancePlus®MG (z480)	z 480			
99026	REFLEX ResistancePlus®MG (7500)	7500 Fast och 7500 Fast Dx			
99025	REFLEX ResistancePlus® MG (CFX)	CFX96 Dx och CFX96 Touch			

* Se webbplatsen <u>https://plexpcr.com/products/sexually-transmitted-infections/resistanceplus-mg/#resources</u> för att kontrollera att du använder den senaste versionen av analysprogramvaran

OBS! Följ standardiserad laboratoriepraxis för överföring, rapportering och förvaring av resultat för att förhindra förlust av provresultat.

24.1 FastFinder-platform – Minimikrav för IT

Analysprogramvaran är tillgänglig i FastFinder-plattformen (https://www.ugentec.com/fastfinder/analysis). Minimikraven för IT för installation av FastFinder-plattformen listas nedan.

Hårdvarukrav

PC (Mac-dator stöds ej)

Processor: 2 GHz, 2 GB RAM

Lagringsutrymme: 10 GB

Internetanslutning Kabel eller DSL, proxy stöds inte

Minsta skärmupplösning: 1366x768 pixlar

Klientoperativsystem som stöds

Operativsystem Versioner som stöds

Windows 10 32-bitars och 64-bitars

Windows 8.1 32-bitars, 64-bitars och ARM

Windows 8 32-bitars, 64-bitars och ARM

Windows 7 SP1 32-bitars och 64-bitars

Windows Vista SP2 32-bitars och 64-bitars

Webbläsare som stöds

För användare med FastFinder-administratörskonto krävs ett av följande:

Internet Explorer 11 eller senare

Microsoft Edge 25 eller senare

- · Firefox 45 eller senare
- Google Chrome 47 eller senare.

Den kan eventuellt köras på äldre versioner, men dessa stöds inte officiellt.

Programvarukrav

För att använda FastFinder-programvara krävs minst .NET 4.6.1. För mer information om ramverket .NET, se Microsoft Windows hjälpsidor.

Antivirusinställningar

Din antivirusprogramvara kan placera FastFinder-installationsprogrammet (UgenTec.FastFinder.Installer.exe) i karantän. Lägg till den här filen i antivirusprogrammets lista över godkända program. Exempel: Symantec (Risk: WS.Reputation.1)

Brandväggskrav

https-anslutningar ska tillåtas för *.fastfinderplatform.com:443

Mer detaljerade instruktioner gällande plattformen FastFinder finns i bruksanvisningen för FastFinder som nås via menyn Help (Hjälp).

Öppna menyn Help (Hjälp)

- Öppna startmenyn

- Välj eller avsnittet Help (Hjälp) och välj sedan Product Information (Produktdokumentation) följt av Instructions For Use (Bruksanvisning)

NEED HELP? In the help section you can consult the user manual, go to the admin and contact us on	Product documentation	Help centre	Go to admin
Help section	Terms of use	About	

24.2 Device set up (Enhetskonfiguration) (ny användare eller enhet)

Se bruksanvisningen för FastFinder, som nås från menyn Help (Hjälp), för detaljerade instruktioner om installation av enheten Öppna FastFinder

- Välj Devices (Enheter) från arbetsflödesfältet
 - > Välj Add (Lägg till)
 - > Välj en fil (körfil) för den nya enheten
- Ändra Current directory (Aktuell katalog)
 - > Välj Browse (Bläddra) och välj den mapp som innehåller relevanta filer
 - > Välj Next (Nästa)
- Lägg till information om enheten
 - > Välj Save (Spara)

24.2.1 <u>Colour Compensation (Färgkompensation)</u>

OBS! Se avsnitt 19.2-och avsnitt 20.2 för mer information om färgkompensation

För LC480 II- och z 480-enheter måste en färgkompensationsfil läggas till på enheten

- Välj LC480 II- eller z 480-enheten
 - > I avsnittet Colour Compensation (Färgkompensation), välj +
 - > Välj färgkompensationsfilen för enheten från katalogen
- Ändra Current directory (Aktuell katalog)
 - > Välj Browse (Bläddra) och välj den mapp som innehåller relevanta filer
- Välj Next (Nästa)
- Välj ResistancePlus MG (LC480), ResistancePlus MG (z480), REFLEX ResistancePlus MG (LC480), eller REFLEX ResistancePlus MG (z480) i listan för att länka till den här analysen
- Välj Save (Spara)

Nya eller ytterligare färgkompensationsfiler kan läggas till i en enhet eller inaktiveras efter behov.

I avsnittet om enhetens färgkompensation

- Välj bredvid filnamnet
- Väli 🔍 Active

för att aktivera eller inaktivera en färgkompensationsfil för en analys

- Välj Save (Spara)

24.3 Analysinsticksmodul (ny användare)

Se bruksanvisningen för FastFinder, som nås via menyn Help (Hjälp), för detaljerade instruktioner om konfiguration av analyser

Öppna FastFinder

- Välj Assays (Analyser) från arbetsflödesfältet
- Välj Add (Lägg till)
 - > För LC480 II > välj ResistancePlus MG (LC480) från listan
 - > För z 480 > välj ResistancePlus MG (z480) från listan
 - > För 7500 Fast och 7500 Fast Dx > välj ResistancePlus MG (7500) från listan
 - > För CFX96 Dx och CFX96 Touch > välj ResistancePlus MG (CFX) från listan

> För analys av prover som extraherats utan IC på LC480 (reflexarbetsflöde) > välj REFLEX ResistancePlus®MG (LC480) från listan

> För analys av prover som extraherats utan IC på z 480 (reflexarbetsflöde) > välj REFLEX ResistancePlus[®]MG (z480) från listan

> För analys av prover som extraherats utan IC på 7500 Fast och 7500 Fast Dx (reflexarbetsflöde) > välj REFLEX ResistancePlus®MG (7500) från listan

> För analys av prover som extraherats utan IC på CFX96 Dx och CFX96 Touch (reflexarbetsflöde) > välj REFLEX ResistancePlus®MG (CFX) från listan

- Välj Add (Lägg till)

För att aktivera eller inaktivera versioner av analysinsticksmodulen

- I General assay information (Allmän analysinformation)
 - > Välj Versions (Versioner)
 - > Välj

för att aktivera eller inaktivera analysversionen

> Välj Save (Spara)

>

24.4 Namngivning av prover

Provetiketter kan tilldelas till en insticksanalysmodul för att automatisera detektion av brunnar och provtyper för analys.

Välj Assays (Analyser) från arbetsflödesfältet

- I Sample type nametags (prefix) (Etiketter för provtyp (prefix)) väljer du
 - > Välj 🖽 för att lägga till en etikett för att definiera provtypsetiketter (negativ kontroll, positiv kontroll och vanligt prov)
 - > Lägg till valfritt ord, valfri akronym eller bokstav i textrutan
 - > Välj Save (Spara)
- I Mix definition nametags (suffix) (Etiketter blandningsdefinition (suffix)) väljer du
 - Välj 🔲 för att lägga till en etikett för att definiera blandningsnamnet
 - > Lägg till valfritt ord, valfri akronym eller bokstav i textrutan
 - > Välj Save (Spara)
- Tilldela samma etikett till motsvarade brunnar i instrumentprogrammet (före eller efter körningen slutförts)
 - > För LC480 II se avsnitt 19 för anvisningar om hur man programmerar provetiketter i körfilen
 - > För z 480 se avsnitt 20 för anvisningar om hur man programmerar provetiketter i körfilen
 - > För 7500 Fast se avsnitt 21 för anvisningar om hur man programmerar provetiketter i körfilen
 - > För 7500 Fast Dx se avsnitt 22 för anvisningar om hur man programmerar provetiketter i körfilen
 - > För CFX96 Dx och CFX96 Touch se avsnitt 23 för anvisningar om hur man programmerar provetiketter i körfilen

OBS! Provetiketterna är skiftlägeskänsliga. Etiketten måste överensstämma exakt med de tilldelade i körfilen.

24.5 Lägga till blandningens satsnummer

Blandningens satsnummer kan tilldelas till analysen för att möjliggöra spårbarhet av reagenser

- Välj Assays (Analyser) från arbetsflödesfältet
 - > I Assay Lot (Analyssats): Välj
- för att lägga till en ny sats eller välj

för att redigera en befintlig sats

När satsen har lagts till blir satsnumren tillgängliga i analysmodulen

>

Show all lots Show only active lots

för att visa alla satsnummer eller endast aktiva satsnummer

24.6 Analys

Välj Analyses (Analyser) från arbetsflödesfältet för att starta en ny analys

Select datafile

Sök efter filen som ska laddas för analys från en specificerad katalog

- Ändra Current directory (Nuvarande katalog)
 - > Välj Browse (Bläddra) och välj den katalog som innehåller relevanta filer
- Välj kör (data)-filen från listan
 - > Välj Next step (Nästa steg)

Tilldela analysinformation till plattan manuellt om benämning av prov inte har installerats i analysmodulen

- För LC480 II > välj ResistancePlus MG (LC480)
- För z 480 > välj ResistancePlus MG (z480)
- För 7500 Fast and 7500 Fast Dx > välj ResistancePlus MG (7500)
- För CFX96 Dx och CFX96 Touch > välj ResistancePlus MG (CFX)
- För analys av prover som extraherats utan IC på LC480 > välj REFLEX ResistancePlus®MG (LC480)
- För analys av prover som extraherats utan IC på z 480 > välj REFLEX ResistancePlus® MG (z480)
- För analys av prover som extraherats utan IC på 7500 Fast och 7500 Fast Dx > välj REFLEX ResistancePlus®MG (7500)
- För analys av prover som extraherats utan IC på CFX96 Dx och CFX96 Touch > välj REFLEX ResistancePlus®MG (CFX)
- Välj brunnar och tilldela som:
 - > Vanligt prov (S)
 - > Negativ kontroll (N)
 - > Positiv kontroll (MG, 23S rRNA mutant typ) (Pa)
 - > Positiv kontroll (MG, 23S rRNA vildtyp) (Pb)
- Välj Next step (Nästa steg)

För att spara plattlayouten som en mall för framtida bruk

- Välj brunnar och tilldela provtyper

B

> Välj

för att spara mall

- Specificera mallnamn för framtida bruk
 - > Välj Save (Spara)

För att ladda en tidigare sparad plattmall

>

- för att ladda plattmall
- Välj mall från rullgardinsmeny
- > Markera kryssrutan för att ladda provtyper specificerade inom plattmallen
- > Välj Load (Ladda)

3 Configure assay(s)

- För LC480 II > välj ResistancePlus MG (LC480)
 - > Välj lämplig Färgkompensationsfil från rullgardinsmenyn
 - > Välj Assay Lot (Analyssats) från rullgardinsmenyn
 - > Välj Analyse (Analysera)
- För z 480 > välj ResistancePlus MG (z480)
 - > Välj lämplig Färgkompensationsfil från rullgardinsmenyn
 - > Välj Assay Lot (Analyssats) från rullgardinsmenyn
 - > Välj Analyse (Analysera)
- För 7500 Fast och 7500 Fast Dx > välj ResistancePlus MG (7500)
 - > Välj Assay Lot (Analyssats) från rullgardinsmenyn

- > Välj Analyse (Analysera)
- För CFX96 Dx och CFX96 Touch > välj ResistancePlus MG (CFX)
 - > Välj Assay Lot (Analyssats) från rullgardinsmenyn
 - > Välj Analyse (Analysera)
- För prover extraherade utan IC (reflexarbetsflöde) på LC480 II > Välj REFLEX ResistancePlus MG (LC480)
 - > Välj lämplig Färgkompensationsfil från rullgardinsmenyn
 - > Välj Assay Lot (Analyssats) från rullgardinsmenyn
 - > Välj Analyse (Analysera)
- För prover extraherade utan IC (reflexarbetsflöde) på z 480 > Välj REFLEX ResistancePlus MG (z480)
 - > Välj lämplig Färgkompensationsfil från rullgardinsmenyn
 - > Välj Assay Lot (Analyssats) från rullgardinsmenyn
 - > Välj Analyse (Analysera)
- För prover extraherade utan IC (reflexarbetsflöde) på 7500 Fast och 7500 Fast Dx > Välj REFLEX ResistancePlus MG (7500)
 - > Välj Assay Lot (Analyssats) från rullgardinsmenyn
 - > Välj Analyse (Analysera)
- För prover extraherade utan IC (reflexarbetsflöde) på CFX96 Dx och CFX96 Touch > Välj REFLEX ResistancePlus MG (CFX)
 - > Välj Assay Lot (Analyssats) från rullgardinsmenyn
 - > Välj Analyse (Analysera)

24.7 Resultat

Se Tabell 63 för en sammanfattning av möjliga rapporterade provresultat.

OBS! Det rekommenderas starkt att amplifieringskurvor bekräftas för alla positiva prover.

Lösa alla resultat som är osäkra (!)

- Välj fliken Resolve (Lös)
- Välj provet som ska lösas
- Inspektera amplifieringskurvor för osäkra resultat
 - > Välj (Ref) för att rita en referenskurva på diagrammet
 - > Välj (P) för att rita en positiv kontroll på diagrammet
 - > Välj N för att rita en negativ kontroll på diagrammet
 - > Välj 🧹 för att bekräfta föreslagna resultat eller välj 📝

för ett annat alternativ

Bekräfta som Negative (Negativ) eller Inconclusive (Obedömbar) och lägg till kommentarer

OBS! För obedömbara prover ska du extrahera och testa proverna en gång till. Om provet förblir obedömbart ska du ta ett nytt prov och testa på nytt.

Slutföra analys och förhindra ytterligare användarredigeringar

- > Välj Authorise Analysis (Auktorisera analys)
- > Välj Yes (Ja) för att bekräfta
- Förkasta analys eller starta om analysen
 - > Välj Restart Analysis (Starta om analys) eller Reject Analysis (Avvisa analys)
 - > Välj ett alternativ för att bekräfta

24.8 Referenskurva

En referenskurva kan sparas och användas för att jämföra med prover på samma platta eller över olika plattor

- Välj intresseprovet i menyn Well Details (Brunninformation) eller Target Details (Målinformation)
- Från amplifieringsdiagrammenyn > välj 🗔 🗔
 - > Markera kryssrutan för intressekanalen och lägg till en etikett
 - > Välj Save (Spara) för att lägga till signal som referenskurva

Denna referenskurva kommer nu att länkas till analysen i analysmenyn och kan inaktiveras när som helst.

24.9 Resultatöversikt

T (F	Tabell 63. Tolkning av resultat med <i>ResistancePlus</i> ® (Resultatöversikt))			MG-analysprogramvara (Fliken Results Overview		
	Brunn	Namn	Analys	Resultat	Cq-värden^	Totalresultat
	A1	Prov 1	ResistancePlus MG	Negativ	CHANNEL C (KANAL C): 25,31	Prov 1 Negativ M. genitalium ej detekterad, IC giltig
	A2	Prov 2	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 13,35 CHANNEL B (KANAL B): 24,22 CHANNEL C (KANAL C): 24,36	Prov 2 – Positiv M. genitalium detekterad, 23S rRNA-mutation ej detekterad
	A3	Prov 3	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 23,32 CHANNEL B (KANAL B): 31,64	Prov 3 – positivt M. genitalium detekterad, 23S rRNA-mutation ej detekterad
	A4	Prov 4	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 21,32 CHANNEL B (KANAL B): 23,22 CHANNEL C (KANAL C): 24,30	Prov 4 – positivt M. genitalium, 23S rRNA- mutation detekterad
	A5	Prov 5	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 23,16 CHANNEL B (KANAL B): 24,31	Prov 5 – positivt M. genitalium, 23S rRNA- mutation detekterad
	A6	Prov 6	ResistancePlus MG	Ogiltig	CHANNEL C (KANAL C): 35,02	Prov 6 – Ogiltig IC ogiltig, upprepa test ¹
!	A7	Prov 7 (Flaggad för att lösas)	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 26,27 CHANNEL B (KANAL B): 28,11 ² CHANNEL C (KANAL C): 28,92	Prov 7 – positivt ² M. genitalium, 23S rRNA- mutation detekterad
•	A7	Prov 7 (Lös till obedömbart)	ResistancePlus MG	Ogiltig	CHANNEL A (KANAL A): 26,27 CHANNEL C (KANAL C): 28,92	Prov 7 – ogiltigt ³ Obedömbart resultat, upprepa test ¹
	B2	Pa (Mutanttyp positiv kontroll)	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 25,01 CHANNEL B (KANAL B): 24,23	Pa - Positiv Positiv kontroll giltig
	В3	Pb (Vildtyp positiv kontroll)	ResistancePlus MG	Positiv	CHANNEL (KANAL A): 25,90	Pb – positiv Positiv kontroll giltig
	B4	N (Negativ kontroll)	ResistancePlus MG	Negativ	CHANNEL C (KANAL C): 26,25	N - Negativ Negativ kontroll giltig

^ Se Tabell 12 för de olika instrumentens kanalnamn

¹ För IC ogiltiga och obedömbara prov, extrahera och testa igen

² Ett prov med osäker Cq flaggas för lösning med (!)

³ Ett prov med lösning som är obedömbart flaggas med 📀

24.10 Exportera resultat

- Exportera resultat
 - > Välj Exports (Exporter) i arbetsflödesfältet
 - > Exportera en eller flera av följande rapporttyper: lista över Cq-värden (CSV), Resultat (CSV), Allmän amplifiering CSV eller lämplig LIS-integrationsfil.
 - > Välj Exports (Exporter)
- Hämta exporter
 - > Välj Reports (Rapporter) i arbetsflödesfältet
 - > Välj filer och spara
- Eller exportera en anpassad rapport

- > Exportera Amplification Curve Analysis (PDF) (Amplifieringskurvanalys (PDF))
- > Välj valfri information som ska inkluderas (diagram, verifieringskedja, resultatöversikt)
- > Välj önskade rapportinställningar för att anpassa provordern
- Välj Exports (Exporter)
 - > Öppna i Report Viewer (Rapportvisare) för att visa, spara och skriva ut

24.11 Exempeldiagram över kontroll

Följande exempel visar amplifieringskurvor (baslinjekorrigerande amplifieringskurvor) och resultatsöversikt från analysprogramvaran **ResistancePlus MG (7500)** för kontrollprovtyper.

24.11.1 M. genitalium, 23S rRNA-mutantkontroll (Pa)

KANAL A KANAL B KANAL C

Brunn	Namn	Analys	Resultat	Cq-värden	Totalresultat
B1	Pa	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 26,36 CHANNEL B (KANAL B): 27,38	Pa - Positiv Positiv kontroll giltig

24.11.2 M. genitalium, 23S rRNA vildtypkontroll (Pb)

KANAL A KANAL B KANAL C

Brunn	Namn	Analys	Resultat	Cq-värden	Totalresultat
D12	Pb	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 24,30 CHANNEL B (KANAL B): 34,29	Pb - Positiv Positiv kontroll giltig

24.11.3 <u>M. genitalium negativ kontroll (N) (negativt prov)</u>

KANAL A KANAL B KANAL C

Brunn	Namn	Analys	Resultat	Cq-värden	Totalresultat
D12	N	ResistancePlus MG	Negativ	CHANNEL C (KANAL C): 27,65	N - Negativ Negativ kontroll giltig

24.12 Exempel

Följande exempel visar amplifieringskurvor (baslinjekorrigerande amplifieringskurvor) och resultatsöversikt från **ResistancePlus MG** (7500)-analysprogramvaran för olika prover.

24.12.1 Exempel 1. Hög kopia M. genitalium, 23S rRNA vildtypsprov

KANAL A KANAL B KANAL C

Brunn	Namn	Analys	Resultat	Cq-värden	Totalresultat
D2	Prov 12	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 16,34 CHANNEL B (KANAL B): 26,59 CHANNEL C (KANAL C): 26,00	Prov 12 – positivt M. genitalium detekterad, 23S rRNA-mutation ej detekterad

24.12.2 Exempel 2. Låg kopia M. genitalium, 23S rRNA vildtypsprov

KANAL A KANAL B KANAL C

Brunn	Namn	Analys	Resultat	Cq-värden	Totalresultat
F1	Prov 6	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 29,30 CHANNEL C (KANAL C): 28,11	Prov 6 – Positiv M. genitalium detekterad, 23S rRNA-mutation ej detekterad

24.12.3 Exempel 3. Hög kopia M. genitalium, 23S rRNA-mutantprov

KANAL A KANAL B KANAL C

Brunn	Namn	Analys	Resultat	Cq-värden	Totalresultat
G3	Prov 9	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 18,08 CHANNEL B (KANAL B): 22,31 CHANNEL C (KANAL C): 28,03	Prov 9 – Positive (positivt) M. genitalium, 23S rRNA-mutation detekterad

24.12.4 Exempel 4. Låg kopia M. genitalium, 23S rRNA-mutantprov

KANAL A KANAL B KANAL C

Brunn	Namn	Analys	Resultat	Cq-värden	Totalresultat
E3	Prov 21	ResistancePlus MG	Positiv	CHANNEL A (KANAL A): 29,08 CHANNEL B (KANAL B): 29,23 CHANNEL C (KANAL C): 26,13	Prov 21 – Positive (positivt) M. genitalium, 23S rRNA-mutation detekterad

24.12.5 Exempel 5. Negativt prov

KANAL A KANAL B KANAL C

Brunn	Namn	Analys	Resultat	Cq-värden	Totalresultat
E3	Prov 73	ResistancePlus MG	Negativ	CHANNEL C (KANAL C): 29,23	Prov 73 – negativt M. genitalium ej detekterad, IC giltig

24.12.6 Exempel 6. Ogiltigt prov

KANAL A KANAL B KANAL C

Brunn	Namn	Analys	Resultat	Cq-värden	Totalresultat
E3	Prov 35	ResistancePlus MG	Ogiltig	CHANNEL C (KANAL C): 31,16	Prov 35 – Ogiltigt IC ogiltig, gör om test

I det här exemplet är IC-signalen utanför kanalens cut-off. För IC ogiltiga prov, extrahera provet och gör sedan om testet.

24.12.7 Exempel 7. Prov som ska lösas – negativ signal

I detta exempel, flaggades att CHANNEL B (KANAL B) (JOE) ska lösas med programvaran och det föreslås att provet är Negative (Negativt) (Figur 30).

Figur 30. Prov som ska lösas så som visas i ana	alysprogramvarans meny Resolve (Lös)
---	--------------------------------------

	Target	Channel	Cq	Curve result	Info	3
	MgPa	FAM	21.32	Positive	M. genitalium detected	
J 0	23S rRNA mutation	JOE	_	Negative 🗸 💉	Mutant not detected	
	IC	TAMRA	27.31	Positive		

För att avgöra lämplig åtgärd för att lösa, kan ett annat prov eller kontroll ritas för signaljämförelse

- Välj Ref för att rita en positiv referenskurva (tidigare sparad) för CHANNEL B (KANAL B) (JOE)
- Välj (P) för att rita en positiv kontroll från körningen
- Välj N för att rita en negativ kontroll från körningen

Efter inspektion av amplifieringskurvorna (ovan) kan man se att det inte finns någon amplifiering i kanalen.

Resultatet blir löst genom att välja ikonen , för att bekräfta det negativa förslaget från programmet. Det lösta resultatet visas i Figur 31 nedan.

Figur 31. Löst resultat så som det vi	sas i analysprogramvarans meny Resolve (Lö	s)
---------------------------------------	--	----

Target	Channel	Cq	Result	Info	3
MgPa	FAM	21.32	Positive	M. genitalium detected	
23S rRNA mutation	JOE	-	Negative	Mutant not detected	Ş
IC	TAMRA	27.31	Positive		

24.12.8 Exempel 8. Prover som ska lösas – obedömbar signal

I detta exempel flaggades att CHANNEL B (KANAL B) (JOE) ska lösas med programvaran och det föreslås att provet är Positive (Positivt) (Figur 32).

1 igui 52. 1 iov 30iii 3ku 10303 3u 30iii vi3u3 i uliuiy3programvululla melly kesolve (E03	Figur 32.	Prov som ska	lösas så som v	isas i anal	ysprogramvarans me	y Resolve	(Lös)
--	-----------	--------------	----------------	-------------	--------------------	-----------	------	---

	Target	Channel	Cq	Curve result	Info	3
	MgPa	FAM	26.27	Positive	M. genitalium detected	
6	23S rRNA mutation	JOE	28.11	Positive 🗸 💉	Mutant detected	
	IC	TAMRA	28.92	Positive		

För att avgöra lämplig åtgärd för att lösa, rita ett annat prov eller kontroll för signaljämförelse

- Välj (Ref) för att rita en positiv referenskurva (tidigare sparad) för CHANNEL B (KANAL B) (JOE)
- Välj (P) för a

P för att rita en positiv kontroll från körningen

- Välj N för att rita en negativ kontroll från körningen

Efter inspektion av amplifieringskurvorna (ovan) finns en möjlig amplifiering i kanalen.

Det rekommenderas att man löser till obedömbar genom att välja ikonen och välja alternativet Inconclusive (Obedömbar) från rullgardinsmenyn. Kommentarer kan läggas till i provets verifieringskedja. Provet ska extraheras och testas på nytt. Det lösta resultatet visas i **Figur 33** nedan.

Se Tabell 63, prov 7, för information om hur resultat visas före och efter lösning på fliken Results Overview (Resultatsöversikt).

Figur 33. Löst resultat så som det visa	s i analysprogramvarans meny Re	solve (Lös)
---	---------------------------------	-------------

Target	Channel	Cq	Result	Info	3
MgPa	FAM	26.27	Positive	M. genitalium detected	
23S rRNA mutation	JOE	28.11	Inconclusive	Mutant detected	Ę
IC	TAMRA	28.92	Positive		

25 Ordlista

Europeisk överensstämmelse För *in vitro*-diagnostisk användning

Auktoriserad representant

I Europeiska gemenskapen

Katalognummer

Satskod

Tillverkare

Tillverkningsdatum

Utgångsdatum

Temperaturbegränsning

Innehåller tillräckligt för xxx bestämningar

Europeisk importör

SpeeDx-produkter kan täckas av en eller flera lokala eller främmande patent. Se <u>www.plexpcr.com/patents</u> för utförlig information om patent.

PlexPCR[®], *ResistancePlus*[®], *PlexPrime*[®] och *PlexZyme*[®] är varumärken som tillhör SpeeDx. Andra copyright och varumärken är respektive ägares egendom.

© Copyright 2022 SpeeDx Pty. Ltd.