ΕN

ResistancePlus[®] GC

Multiplex real-time PCR assay for the detection of *Neisseria* gonorrhoeae and markers associated with susceptibility and resistance to ciprofloxacin

Product	Platform	Size	Catalogue no.
		(reactions)	
ResistancePlus® GC(610)	LC480 II	100	REF 2011001
	z 480		
ResistancePlus® GC(610)	LC480 II	25	REF 2011025
	z 480		
ResistancePlus® GC(550)	ABI 7500 Fast	100	REF 2013001
	ABI 7500 Fast Dx		
ResistancePlus® GC(550)	ABI 7500 Fast	25	REF 2013025
	ABI 7500 Fast Dx		
ResistancePlus® GC(675)	CFX96 IVD	100	REF 2015001
	CFX96 Touch		
ResistancePlus® GC(675)	CFX96 IVD	25	REF 2015025
	CFX96 Touch		
Accessory products – Analysis s	oftware		
ResistancePlus® GC (LC480)			REF 99010
ResistancePlus® GC (z480)			REF 99019
ResistancePlus® GC (7500)			REF 99009
ResistancePlus® GC (CFX)			REF 99015

MedEnvoy

Prinses Margrietplantsoen 33 – Suite 123 2595 AM The Hague The Netherlands

SpeeDx Pty Ltd Suite 102, National Innovation Centre 4 Cornwallis Street, Eveleigh, NSW 2015, Australia Tel: +61 2 9209 4170, Email: <u>tech@speedx.com.au</u>

FOR PROFESSIONAL USE ONLY*

Not for sale in the USA

Contents

1	Product description				
2	Intended use				
3	Pathogen information				
4	Kit co	ontents	6		
5	Shipp	bing and storage	/ ح		
0	vvan		······ / 		
0. 6	ו ס		1		
0. C	2		······ / 		
6.	3	Specimen nandling			
6.	4	Assay	8		
6.	5	Safety precautions	8		
6.	6	Assay Plugins: Warnings/Precautions/Limitations	8		
7	Mate	rials required but not provided	8		
8	Princ	rials provided as a separate accessory product	9		
3 10	Proce	edure overview	10		
11	Detai	led procedure	13		
11	.1	Sample collection, transport and storage	13		
	11.1.1	Validated sample collection devices	13		
	11.1.2	Neat urine collection. transport and storage.	13		
	11.1.3	Aptima [®] Urine Collection Kit (Hologic, Cat no 301040) collection, transport and storage	13		
	11 1 4	Aptima [®] unisex swab specimen collection kit (Hologic, Cat no 301041) collection, transport and storage	13		
	11 1 5	Aptima® Multitest swab collection kit (Hologic, Cat no PRD-03546) collection, transport and storage	14		
	11 1 6	cobas [®] PCR Urine Sample Kit (Roche, Catino 05170486190) collection, transport and storage	14		
	11 1 7	cobas [®] PCR Media Lini Swab Sample Kit (Roche, Catino 07958030190) collection, transport and storage	14		
	11 1 8	Validated sample extracts	14		
1.	11.1.0		1 <i>1</i>		
1	.2	Internal Control /IC)	14		
	11 2 1	Internal Control on the E71 Advanced XI	15		
	11.3.1		15		
1.	11.3.2		15		
I	1111	Processing isolates	15		
	11.4.1	Storage of processed isolates	15		
11	1.5	Preparation of real-time PCR.	15		
	11.5.1		15		
10	11.5.2		16		
12	12 Programming and analysis				
14	Limit	ations	17		
15	15 Quality control				
16	16 <i>ResistancePlus</i> [®] GC Control instructions				
16	16.1 Instructions for use				
17	17 Performance characteristics				
17	7.1	Clinical performance	18		

1	7.1.1	Clinical Study 1	
1	7.1.2	Clinical Study 2	19
1	7.1.3	Clinical Study 3	21
1	7.1.4	Clinical Study 4	22
1	7.1.5	Clinical Study 5	23
17.2	2	Analytical performance	24
1	7.2.1	Reproducibility and repeatability (7500 Fast and 7500 Fast Dx)	24
1	7.2.2	Reproducibility and repeatability (CFX96 IVD and CFX96 Touch)	
1	7.2.3	Analytical sensitivity	
1	7.2.4	Inclusivity	
1	7.2.5	Analytical specificity	
1	7.2.6	Competitive interference,	31
1	7.2.7	Potentially interfering substances	31
18	Custo	omer and technical support	32
19	Refer	ences	
20	Appe	ndix 1: LightCycler [®] 480 II programming for reaction volume of 20 μl	
20.1	1	Programming the LightCycler [®] 480 Instrument II (LC480 II)	33
20.2	2	Colour Compensation for LightCycler [®] 480 Instrument II	37
20.3	3	Interpretation of results	
21	Appe	ndix 2: LightCycler [®] 480 II programming for reaction volume of 30 µI	
21.1	1	Programming the LightCycler [®] 480 Instrument II (LC480 II)	
21.2	2	Colour Compensation for LightCycler [®] 480 Instrument II	
21.3	3	Interpretation of results	
22	Appe	ndix 2: cobas z 480 analyser programming for reaction volume 20 µl	
22.1	1	Programming the cobas z 480 analyser (z 480)	
22.2	2	Colour Compensation for cobas z 480 analyser	
 22.3	3	Interpretation of results	
23	Арре	ndix 3: Applied Biosystems [®] 7500 Fast programming for reaction volume 20 µi	
23.1	1	Programming the Applied Biosystems® 7500 Fast	
23.2	2	Interpretation of results	
24	Appe	ndix 4: Applied Biosystems° 7500 Fast programming for reaction volume 30 μl	
24.	ו ר	Programming the Applied Biosystems 7500 Fast	
24.2 25	Anno	Interpretation of results	
2J 25 ·	лрре 1	Programming the Applied Biosystems [®] 7500 Fast Dx (using run file template)	
25.	י כ	Interpretation of results	
23.2 26	Anne	nder 6: Applied Biosystems [®] 7500 East Dx programming for reaction volume 30 ul	
-0 26 ·	, ,ppe 1	Programming the Applied Biosystems [®] 7500 Fast Dx (using run file template)	
20. 26.1	2	Interpretation of results	ور دع
20.2 27	Appe	ndix 8: Bio-Rad CFX96™ IVD & Touch programming for reaction volume of 20 ul	
 27 ·	1	Programming the CEX96 TM IVD or Touch Real-time PCR System	63
27 (2	Interpretation of results	
28	Appe	ndix 7: Bio-Rad CFX96™ IVD & Touch programming for reaction volume of 30 µl	

2	28.1 Programming the CFX96 [™] IVD or Touch Real-time PCR System		66	
2	28.2	3.2 Interpretation of results		
29	Appe	ndix A: Result interpretation	69	
2	29.1	FastFinder platform – Minimum IT requirements	69	
:	29.2	Device set up (new user or device)	70	
	29.2.1	Colour Compensation	70	
2	29.3	Assay plug-in (new user)	71	
2	29.4	Sample naming	71	
2	29.5	Adding mix lot numbers	72	
:	29.6	Analysis	72	
2	29.7	Results	73	
:	29.8	Reference curve	74	
:	29.9	Overview of results	74	
:	29.10	Exporting results	76	
:	29.11	Control example graphs	76	
	29.11.1	Positive Control (GC gyrA S91F mutant) (Pa)	76	
	29.11.2	2 Positive Control (GC gyrA S91 wild type) (Pb)	77	
	29.11.3	3 Negative Control (N)	77	
:	29.12	Examples	78	
	29.12.1	1 High copy <i>N. gonorrhoeae</i> positive, <i>gyrA</i> wild type		
	29.12.2	2 High copy <i>N. gonorrhoeae</i> positive, <i>gyrA</i> mutant	78	
	29.12.3	Low copy <i>N. gonorrhoeae</i> positive, <i>gyrA</i> wild type	79	
	29.12.4	Low copy <i>N. gonorrhoeae</i> positive, <i>gyr</i> A mutant	79	
	29.12.5	5 <i>N. gonorrhoeae</i> positive, <i>gyrA</i> indeterminate	80	
	29.12.6	Sample to resolve – confirm negative	80	
30	Appe	ndix B: Instructions for testing <i>ResistancePlus</i> [®] GC at 30 μl reaction volume	81	
;	30.1	Preparation of PCR	81	
	30.1.1	Master mix preparation – Samples extracted with SpeeDx Internal Control Cells	81	
	30.1.2	Master mix stability	81	
31	Gloss	sary	82	

Product description

The **Resistance**Plus[®] GC kit simultaneously detects the bacterium *Neisseria gonorrhoeae* (GC) and the *gyrA* S91 (wild type) or *gyrA* S91F (mutant) markers that are associated with susceptibility or resistance to the fluoroquinolone antibiotic, ciprofloxacin.

The **Resistance**Plus[®] GC kit is a 1-well real-time PCR multiplex consisting of 5 readouts: Readout 1) GC opa gene, Readout 2) GC porA gene, Readout 3) gyrA S91 (wild type), Readout 4) gyrA S91F (mutant), and Readout 5) Internal control (to monitor extraction efficiency and PCR inhibition). The **Resistance**Plus[®] GC kit utilises **Plex**Zyme[®] and **Plex**Prime[®] technology for specificity and superior multiplexing capability.

The assay is compatible with samples extracted using the MagNA Pure 96 System (Roche), EZ1 Advanced XL (Qiagen), and realtime detection on the LightCycler[®] 480 Instrument II (LC480 II, Roche), cobas[®] z 480 analyser (z 480), Applied Biosystems[®] 7500 Fast (7500 Fast), Applied Biosystems[®] 7500 Fast Dx (7500 Fast Dx), the Bio-Rad CFX96[™] IVD (CFX96 IVD) and CFX96 Touch[™] (CFX96 Touch) Real-time PCR Detection Systems.

2 Intended use

The **Resistance**Plus[®] GC kit is a qualitative real-time PCR assay for the detection of *Neisseria gonorrhoeae* and *gyrA* S91 wild type and *gyrA* S91F mutant DNA markers that are associated with susceptibility or resistance to ciprofloxacin.

The **Resistance**Plus[®] GC kit is intended to aid in the diagnosis of *Neisseria gonorrhoeae* and *gyrA* status and should be used in conjunction with clinical and other laboratory information.

The *ResistancePlus[®]* GC kit may be used with the following specimen types: male and female urine, anal, rectal, vaginal and pharyngeal swabs, from symptomatic and asymptomatic patients.

The *ResistancePlus®* GC kit is intended to be used in professional settings such as hospitals, or reference or state laboratories. It is not intended for self-testing, home use, or point of care use.

3 Pathogen information

Neisseria gonorrhoeae (GC) is the aetiological agent of the sexually transmitted infection gonorrhoea, and is a common cause of urethritis in men, and cervicitis, pelvic inflammatory disease (PID), and reproductive complications (infertility and ectopic pregnancy) in women¹. Antimicrobial resistant GC is a global public health concern, and standard management using empiric treatment is being challenged by the spread of resistance and limited alternate treatment options. Individualised treatment guided by antibiotic susceptibility information, has been proposed as a strategy to re-instigate the use of antibiotics no longer recommended for empiric treatment, while also conserving last-line therapies.

Ciprofloxacin, a fluoroquinolone antibiotic, is an excellent option for individualised treatment. While it was abandoned from empirical use in most regions from the 2000's², large proportions of gonorrhoea cases remain susceptible. In addition, the *gyrA* S91 wild type and *gyrA* S91F mutation markers are highly predictive of ciprofloxacin susceptibility and resistance, respectively^{3.4.5}. Molecular detection of the *gyrA* S91 wild type and *gyrA* S91F markers can therefore be used to guide effective ciprofloxacin treatment in patients with susceptible infections.

4 Kit contents

Table 1. <i>ResistancePlus[®]</i> GC ₍₆₁₀₎ kit contents					
Cap colour	Contents	Description	Cat no 2011001 (100 reactions *)	Cat no 2011025 (25 reactions**)	
Blue	<i>Plex</i> Mastermix, 2x	Mastermix containing components necessary for qPCR including dNTPs, MgCl ₂ , DNA polymerase and buffer	1 x 1 ml	1 x 250 µl	
Brown	GC+gyrA Mix, 20x	Mix containing oligonucleotides [^] for amplification and detection of <i>N. gonorrhoeae</i> , <i>gyrA</i> S91 and <i>gyrA</i> S91F	1 x 100 µl	1 x 25 µl	
White	Control Mix 1, 20x	Mix containing oligonucleotides [^] for amplification and detection of internal control assay for LC480 II and z 480	1 x 100 µl	1 x 25 µl	
Red	Internal Control Cells [#]	Internal control cells containing internal control DNA template to monitor extraction and amplification efficiency	1 x 500 µl	1 x 100 µl	
Neutral	Nuclease Free Water	PCR grade water	1 x 1 ml	1 x 1 ml	

Store template tubes separately from oligo mixes, i.e. template or nucleic acid handling room

^ Oligonucleotides are PCR primer pairs (including *PlexPrime®* primers), *PlexZyme®* enzymes and fluorescent probe

* Sufficient for 100 reactions when using 20 µl reaction volume; Sufficient for 64 reactions when using 30 µl reaction volume

** Sufficient for 25 reactions when using 20 µl reaction volume; Sufficient for 16 reactions when using 30 µl reaction volume

Table 2. <i>ResistancePlus</i> [®] GC ₍₅₅₀₎ kit contents				
Cap colour	Contents	Description	Cat no 2013001 (100 reactions *)	Cat no 2013025 (25 reactions**)
Blue	<i>Plex</i> Mastermix, 2x	Mastermix containing components necessary for qPCR including dNTPs, MgCl ₂ , DNA polymerase and buffer	1 x 1 ml	1 x 250 µl
Brown	GC+ <i>gyrA</i> Mix, 20x	Mix containing oligonucleotides [^] for amplification and detection of <i>N. gonorrhoeae</i> , <i>gyrA</i> S91 and <i>gyrA</i> S91F	1 x 100 µl	1 x 25 µl
White	Control Mix 2, 20x	Mix containing oligonucleotides^ for amplification and detection of internal control assay for 7500 Fast and 7500 Fast Dx	1 x 100 µl	1 x 25 µl
Red	Internal Control Cells [#]	Internal control cells containing internal control DNA template to monitor extraction and amplification efficiency	1 x 500 µl	1 x 100 µl
Neutral	Nuclease Free Water	PCR grade water	1 x 1 ml	1 x 1 ml

Store template tubes separately from oligo mixes, i.e. template or nucleic acid handling room

^ Oligonucleotides are PCR primer pairs (including *PlexPrime®* primers), *PlexZyme®* enzymes and fluorescent probe

* Sufficient for 100 reactions when using 20 µl reaction volume; Sufficient for 64 reactions when using 30 µl reaction volume

** Sufficient for 25 reactions when using 20 µl reaction volume; Sufficient for 16 reactions when using 30 µl reaction volume

Table 3. <i>ResistancePlus</i> [®] GC ₍₆₇₅₎ kit contents					
Cap colour	Contents	Description	Cat no 2015001 (100 reactions *)	Cat no 2015025 (25 reactions**)	
Blue	Plex Mastermix, 2x	Mastermix containing components necessary for qPCR including dNTPs, MgCl ₂ , DNA polymerase and buffer	1 x 1 ml	1 x 250 µl	
Brown	GC+gyrA Mix, 20x	Mix containing oligonucleotides [^] for amplification and detection of <i>N. gonorrhoeae</i> , <i>gyrA</i> S91 and <i>gyrA</i> S91F	1 x 100 µl	1 x 25 µl	
White	Control Mix 3, 20x	Mix containing oligonucleotides [^] for amplification and detection of internal control assay for CFX 96 IVD and CFX 96 Touch	1 x 100 µl	1 x 25 µl	
Red	Internal Control Cells [#]	Internal control cells containing internal control DNA template to monitor extraction and amplification efficiency	1 x 500 µl	1 x 100 µl	
Neutral	Nuclease Free Water	PCR grade water	1 x 1 ml	1 x 1 ml	

Store template tubes separately from oligo mixes, i.e. template or nucleic acid handling room

^ Oligonucleotides are PCR primer pairs (including *PlexPrime®* primers), *PlexZyme®* enzymes and fluorescent probe

* Sufficient for 100 reactions when using 20 µl reaction volume; Sufficient for 64 reactions when using 30 µl reaction volume

** Sufficient for 25 reactions when using 20 µl reaction volume; Sufficient for 16 reactions when using 30 µl reaction volume

5 Shipping and storage

- The components of the *ResistancePlus®* GC kits are shipped on dry ice or ice gel packs. All components should be stored between -25°C to -15°C upon receipt. It is recommended that freeze/thaw cycles are limited to 15.
- When stored under the recommended conditions and handled correctly, activity of the kit is retained until the expiry date stated on the label. Do not use past expiry date.
- Any serious incident shall be reported to SpeeDx by contacting tech@speedx.com.au

6 Warnings and precautions

6.1 General

- For *in vitro* diagnostic use only.
- Carefully read these Instructions for Use prior to use. Closely follow procedures as described to ensure reliability of test results. Any deviation from these procedures may affect test performance.
- Users should be adequately trained in the use of the *ResistancePlus®* GC assay.
- Any serious incident shall be reported to the manufacturer and competent authority of the Member State in which user and/or patient is established

6.2 Laboratory

- It is recommended to perform sample preparation/extraction, mastermix preparation, sample addition and thermocycling in spatially separated spaces. At a minimum the PCR instrument should ideally be in a separate room to areas where reactions are prepared.
- It is recommended to follow routine laboratory precautions. Wear appropriate personal protective equipment such as gloves, protective eye wear and laboratory coat when handling reagents.
- Pathogenic organisms may be present in clinical specimens. Treat all biological specimens as potentially infectious and follow your institution's safety procedures for handling chemicals and biological samples.
- Follow your institution's hazardous waste disposal procedures for proper disposal of specimens, reagents and other potentially contaminated materials.

6.3 Specimen handling

- Specimens should be collected, transported and stored using standard laboratory techniques or according to collection kit instructions.

6.4 Assay

- Basic precautions for preventing contamination of PCR reactions include the use of sterile filter pipette tips, use of a new pipette tip for every pipetting action, and separation of workflow.
- PCR tests are prone to contamination from previous PCR products. Never open reaction vessels after the completion of PCR.
- Assay reagents contain IDTE Buffer which can cause severe eye irritation. It is recommended to use in a well-ventilated area and wear appropriate personal protective equipment such as gloves, protective eye wear and laboratory coat when handling reagents.

6.5 Safety precautions

- Safety Data Sheets (SDS) are available on request. Please contact tech@speedx.com.au for more information.

6.6 Assay Plugins: Warnings/Precautions/Limitations

- SpeeDx software can only control the analysis of raw data generated from the test kit when used with its respective PCR instrument. It does not control the preparation of samples, reactions, programming of equipment or delivery of treatment.
- Users should be adequately trained in the use of the *ResistancePlus*[®] GC analysis software and the access should be limited to each assigned single user
- It is recommended to implement user authentication access and cybersecurity controls such as anti-virus software or use of a firewall within the IT system and infrastructure which uses the software
- Upon detection of a cybersecurity incident such as unauthorised access and ransomware attacks, please contact <u>tech@speedx.com.au</u> for further support.

7 Materials required but not provided

General lab consumables

- Gloves and clean lab coats
- Vortex mixer
- Benchtop centrifuge for 0.5 ml and 1.5 ml tubes
- Micropipettors
- Sterile aerosol-resistant pipette tips
- 0.5 ml tubes and 1.5 ml tubes (PCR-grade)

For MagNA Pure 96 Instrument

- 1x Phosphate Buffered Saline (PBS)
- MagNA Pure 96 Internal Control Tube (Roche, Cat no 06374905001)
- MagNA Pure 96 DNA and Viral NA Small Volume Kit (Roche, Cat no 06543588001)
- MagNA Pure 96 System Fluid (external) (Roche, Cat no 06640729001)
- MagNA Pure 96 Processing Cartridge (Roche, Cat no 06241603001)
- MagNA Pure 96 Pure tip 1000uL (Roche, Cat no 6241620001)
- MagNA Pure 96 Output Plate (Roche, Cat no 06241611001)
- MagNA Pure Sealing Foil (Roche, Cat no 06241638001)

For Qiagen EZ1 Advanced XL Instrument

- EZ1 DSP Virus Kit (Cat no 62724)
- EZ1 Advanced XL DSP Virus Card (Cat no 9018703)

For Applied Biosystems® 7500 Fast and 7500 Fast Dx

- MicroAmp[®] Optical 96-well reaction plates (ThermoFisher Scientific, Cat no 4316813)
- MicroAmp® Optical Adhesive Film (ThermoFisher Scientific, Cat no 4360954)

For LightCycler[®] 480 Instrument II and cobas[®] z480 analyser

- *PlexPCR*[®] Colour Compensation (CC) kit (Cat no 90001)
- LightCycler[®] 480 Multiwell Plate 96 (Roche, Cat no 04729692001)
- LightCycler[®] 480 Sealing Foil (Roche, Cat no 04729757001)

For Bio-Rad CFX96™ IVD and CFX96 Touch™ Real-time PCR Detection System

- Multiplate[™] 96-well PCR plates (Bio-Rad, Cat no MLP9601)
- Microseal[®] 'B' PCR Plate Sealing Film, adhesive, optical (Bio-Rad, Cat no MSB1001)

Negative Control Material

- Known negative sample (provided by end user) (The known negative specimen is a negative process control that is either a previously tested negative sample or negative matrix that can be utilized throughout the process to ensure extraction and amplification worked appropriately as it has IC in it.)

Sample Collection Devices

- Aptima[®] urine collection kit (Hologic, Cat no 301040)
- Aptima[®] unisex swab specimen collection kit (Hologic, Cat no 301041)
- Aptima® Multitest swab collection kit (Hologic, Cat no PRD-03546)
- cobas[®] PCR media (Roche, Cat no 06466281190)
- cobas[®] PCR Urine Sample Kit (Roche, Cat no 05170486190)
- cobas[®] PCR Media Uni Swab Sample Kit (Roche, Cat no 07958030190)

8 Materials provided as a separate accessory product

Positive Material

- ResistancePlus[®] GC Control (Cat no 95003)

9 Principle of the technology

Real-time PCR (qPCR) can be used to amplify and detect specific target nucleic acids from pathogens. *PlexPCR*[®] is a qPCR technology utilising *PlexZyme*[®] enzymes that detect and report the amplified product through the generation of a fluorescent signal (**Figure 1**). The *ResistancePlus*[®] GC kit also employs *PlexPrime*[®] primers for specific amplification of mutant sequences which is coupled with mutant specific *PlexZyme*[®] detection (**Figure 2**).

PlexZyme[®] enzymes are catalytic DNA complexes composed of two DNA oligos referred to as "Partial Enzymes". Each Partial Enzyme has a target-specific region, a catalytic core and a universal probe binding region. When the target product is present, the two Partial Enzymes bind adjacently to form the active *PlexZyme*[®] which has catalytic activity to cleave a labelled probe. Cleavage separates the fluorophore and quencher dyes, producing a fluorescent signal that can be monitored in real time. *PlexZyme*[®] enzymes have additional specificity compared to alternate detection technologies, since two Partial Enzymes are required to bind for detection. *PlexZyme*[®] enzymes are also multiple turnover enzymes, and multiple probes can be cleaved during each PCR cycle, resulting in a strong and sensitive signal. *PlexZyme*[®] assays are highly sensitive and specific and are ideally suited for the multiplexed detection of pathogens.

PlexPrime® primers have three functional regions. The long 5' region anchors the primer to a particular location, and the short 3' region selectively targets extension from the mutant base. An Insert sequence lies between the 5' and 3' regions and acts as a bridging structure which inserts a target-independent sequence into the resulting amplicon and increases the selective pressure of the 3' region. In multiplex, each **PlexPrime®** primer is designed to target a specific mutant base and will incorporate a unique Insert sequence, thus producing distinct mutant amplicon sequences. Unlike other probe-based detection technologies, the **PlexZyme®** enzyme can be overlapped with the **PlexPrime®** primer to target the specific mutant amplicon containing the mutant base and incorporated Insert sequence. The unique combination of **PlexPrime®** primers coupled to **PlexZyme®** enzymes allows the specific amplification of mutant sequences, and sensitive and specific detection in multiplex.

Figure 1. Schematic representation of *PlexZyme*[®] detection and universal signalling

Figure 2. Schematic representation of the *PlexPrime[®]* primer coupled with *PlexZyme[®]* detection. The *PlexPrime[®]* primer specifically amplifies the mutant sequence and *PlexZyme[®]* enzymes specifically detect the amplicon.

PlexPrime amplicon

10 Procedure overview

11 Detailed procedure

Note: Provided reagents are named in italics and colour of the tube cap follows in brackets.

11.1 Sample collection, transport and storage

Male and female urine, and anal, rectal, cervical, endocervical, vaginal, urethral, pharyngeal and eye swabs, from symptomatic and asymptomatic patients should be collected, transported and stored using standard laboratory techniques or according to collection kit instructions.

N. gonorrhoeae isolates have also been validated for use with the *ResistancePlus*[®] GC kit.

11.1.1 Validated sample collection devices

Inadequate or inappropriate specimen collection, storage and transport are likely to yield false test results. Proper training in specimen collection is highly recommended to ensure specimen quality and stability.

Sample collection devices that have been validated with the *ResistancePlus*[®] GC kit are included below with short guidance regarding the device manufacturer's instructions for collection, handling and transport. These instructions are not intended to replace or supersede any instructions provided by the manufacturer. Always refer to specimen collection device manufacturer instructions for proper collection methods.

Prior to any collection method, trained staff must ensure proper understanding of the device and methodology. At minimum review the test description for the following: indication of specimen type, sufficient volume, procedure(s), necessary collection materials, patient preparation, and proper handling and storage instructions.

N. gonorrhoeae isolates have also been validated for use with the ResistancePlus® GC kit.

11.1.2 <u>Neat urine collection, transport and storage</u>

- 1. Use of a clear sterile urine collection cup, free of any preservatives or transport media is recommended for patient self-collection.
- 2. Patient should collect 20-50ml of first void urine and tightly recap or screw on lid.
- 3. It is recommended to double bag urine specimen with absorbent pads for transport. Storage temperatures of urine specimen is dependent on the intended processing time.

11.1.3 Aptima[®] Urine Collection Kit (Hologic, Cat no 301040) collection, transport and storage

Directions are summarized below for the collection and transport of male and female urine specimen with the Aptima[®] Urine Collection Kit.

- 1. Use of a clear sterile urine collection cup, free of any preservatives or transport media is recommended for patient self-collection.
- 2. Patient is directed to provide 20-30 mL of first void urine into provided urine collection cup. Female patients should not cleanse the labial area prior to providing the specimen.
- 3. Using the pipette and transport tube included in Aptima® Urine Collection Kit, transfer 2mL of urine with the pipette into the uncapped specimen transport tube. Proper urine volume line must fall within the black fill lines on the urine transport tube. Urine must be transferred from the clear sterile urine cup to the Aptima urine specimen tube within 24 hours of collection.
- 4. Re-cap the urine transport tube tightly.
- 5. After collection, processed urine specimens in the Aptima urine specimen transport tube should be transported and stored at 2°C to 30°C and store at 2°C to 30°C until tested. Refer to manufacturer's instructions for detailed storage optimization.

11.1.4 Aptima® unisex swab specimen collection kit (Hologic, Cat no 301041) collection, transport and storage

Directions are summarized below for the collection and transport of endocervical swab specimen and male urethral swab with the Aptima[®] unisex swab specimen collection kit (Hologic, Cat no 301041).

11.1.4.1 Endocervical swab specimen collection, transport and storage

- 1. Remove excess mucus from the cervical os and surrounding mucosa using the cleaning swab (white shaft swab in the package with red printing). Discard this swab. Note: To remove excess mucus from the cervical os, a large-tipped swab (not provided) may be used.
- 2. Insert the specimen collection swab (blue shaft swab in the package with the green printing) into the endocervical canal.
- 3. Gently rotate the swab clockwise for 10 to 30 seconds in the endocervical canal to ensure adequate sampling.
- 4. Withdraw the swab carefully; avoid any contact with the vaginal mucosa.

- 5. Remove the cap from the swab specimen transport tube and immediately place the specimen collection swab into the transport tube.
- 6. Carefully break the swab shaft against the side of the tube at the score line and discard the top portion of the swab shaft; use care to avoid splashing of contents.
- 7. Re-cap the swab specimen transport tube tightly. After collection, transport and store the swab in the swab specimen transport tube at 2°C to 30°C until tested.

11.1.4.2 <u>Male urethral swab specimen collection, transport and storage</u>

- 1. The patient should not have urinated for at least 1 hour prior to sample collection.
- 2. Insert the specimen collection swab (blue shaft swab in the package with the green printing) 2 to 4 cm into the urethra.
- 3. Gently rotate the swab clockwise for 2 to 3 seconds in the urethra to ensure adequate sampling.
- 4. Withdraw the swab carefully.
- 5. Remove the cap from the swab specimen transport tube and immediately place the specimen collection swab into the transport tube.
- 6. Carefully break the swab shaft against the side of the tube at the scoreline and discard the top portion of the swab shaft; use care to avoid splashing of contents.
- 7. Re-cap the swab specimen transport tube tightly. After collection, transport and store the swab in the swab specimen transport tube at 2°C to 30°C until tested.

11.1.5 Aptima® Multitest swab collection kit (Hologic, Cat no PRD-03546) collection, transport and storage

The Aptima[®] Multitest swab collection kit may be used for various clinician and patient collection specimen. Due to the variability, refer to manufacturer package insert for appropriate specimen types and collection methods.

11.1.6 cobas[®] PCR Urine Sample Kit (Roche, Cat no 05170486190) collection, transport and storage

Directions are summarized below for the collection and transport of male and female urine with cobas[®] PCR Urine Sample Kit (Roche, Cat no 05170486190).

- 1. Transfer the first catch urine collected into the cobas[®] PCR Media tube using the provided disposable pipette. (Note: If the urine specimen cannot be transferred immediately, it can be stored at 2°C to 30°C for up to 24 hours.)
- 2. The correct volume of urine has been added when the fluid level is between the two black lines on the tube label.
- 3. Tightly re-cap the cobas® PCR Media tube.
- 4. Invert the tube 5 times to mix. The specimen is now ready for transport.
- 5. If transfer to a preservation media, refer to manufacture
- 6. Refer to manufacturer's instructions for detailed storage optimization.

11.1.7 cobas[®] PCR Media Uni Swab Sample Kit (Roche, Cat no 07958030190) collection, transport and storage

Directions are summarized below for the collection and transport of rectal and vaginal clinician collection specimen with cobas[®] PCR Media Uni Swab Sample Kit (Roche, Cat no 07958030190).

- To collect specimen by rectal swabs: hold the swab with the scoreline above your hand and insert the swab about 3 to 5 cm into the anal canal. Gently turn the swab for about 5-10 seconds while running the swab against the walls of the rectum. If the swab is grossly contaminated with feces, discard and repeat the collection. Withdraw the swab carefully. Do not let the swab touch any surface before placing it into the collection tube.
- 2. To collect the specimen by vaginal swab (clinician collected): In one hand, hold the swab with the scoreline above your hand and insert the swab about 5 cm (2 inches) into the vaginal opening. Gently turn the swab for about 30 seconds while rubbing the swab against the walls of the vagina. Withdraw the swab carefully. Do not let the swab touch any surface before placing it into the collection tube.

11.1.8 Validated sample extracts

- Sample extracts validated for use include:
- cobas[®] x480 extracts

11.2 Sample processing

The ResistancePlus® GC kit has been validated on the following extraction instruments in Table 4.

See **Section 11.3** for instructions to use the Internal Control.

Table 4. Validated extraction protocols						
Instrument	Extraction kit	Sample volume	Protocol	Elution volume		
EZ1 Advanced XL ^a	EZ1 DSP Virus Kit	200 µl	"On board" workflow	90 µl		
MagNA Pure 96 ^b	MagNA Pure 96 DNA and Viral NA Small Volume Kit	200 µl	Pathogen Universal 200	50 µl or 100 µl		

^a See 11.3.1 for how to use the internal control on the EZ1

^b See 11.3.2 for how to use the internal control on the MagNA Pure 96

11.3 Internal Control (IC)

The kit includes an internal control to monitor extraction efficiency and qPCR inhibition. The internal control assay is provided as a *Control Mix* (WHITE) and *Internal Control Cells* (RED). The *Control Mix* is added to the PCR Master Mix (Table 6). The *Internal Control Cells* contain the internal control DNA template. The *Internal Control Cells* are diluted and processed as below for specific extraction instruments. The internal control DNA template is therefore co-extracted with the sample and co-amplified in the reaction.

11.3.1 Internal Control on the EZ1 Advanced XL

Add 5 µl Internal Control cells (RED) to each sample and load into the sample vessel on the instrument.

11.3.2 Internal Control on the MagNA Pure 96

Dilute the *Internal Control Cells* (RED) 1 in 200 in 1x PBS (**Table 5**). Adjust volume as required using the same dilution factor (see extraction kit manual for minimum volume for required number of samples). The diluted internal control cells are loaded into the Internal Control Tube on the MagNA Pure 96 and 20 μ l is automatically added to each sample (default).

Note: Do NOT store diluted Internal Control Cells

Table 5. Dilution of Internal Control Cells for MagNA Pure 96 (1 in 200 dilution)					
Internal Control Cells (RED) (μl)	1x PBS (μl)	Total volume (μl)	Volume added to sample (µl)		
18	3582	3600	20		

11.4 Processing Isolates

Prepare culture to a 1.0 McFarland standard and heat at 100°C for 8 minutes. Once the isolate boilate has returned to room temperature, briefly vortex and spin down. Dilute boilate 1 in 10 using PCR-grade or distilled water. Processed boilate is then treated as an extracted sample.

11.4.1 Storage of processed isolates

Store boilates at -20°C for up to 1 month or -70°C for long term storage.

11.5 Preparation of real-time PCR

The *ResistancePlus*[®] GC kit can be tested at a final reaction volume of 20 µl or optionally be tested at a final reaction volume of 30 µl if sensitivity is a concern. Refer to **Section 30** for instructions for testing at a final reaction volume of 30 µl.

Refer to **Table 1 – Table 3** for description of kit contents.

11.5.1 Master Mix preparation

Note: Before use of reagents, thaw completely, and mix thoroughly by briefly vortexing.

For a 20 µl reaction volume, 15 µl Master Mix and 5 µl sample is required. Prepare Master Mix as outlined in Table 6.

Pipette the Master Mix into the PCR plate and then add extracted sample to the reaction.

- Positive and negative controls should be run on each plate.
- Seal, then centrifuge the plate and transfer to thermocycler.

Table 6. Master Mix					
Reagent	Concentration	Volume per 20 µl reaction (µl)			
Nuclease Free Water (Neutral)	N/A	3.0			
Plex Mastermix (BLUE)	2x	10.0			
GC+gyrA Mix (BROWN)	20x	1.0			
Control Mix [*] (WHITE)	20x	1.0			
Total volume (μl)		15.0			
Add 5 μl sample for a final volume of 20 μl					

* The Control Mix included in each kit is specific to the PCR instrument used; refer to Table 1 - Table 3 for correct Control Mix to use

11.5.2 Master Mix stability

The Master Mix can be prepared in bulk and stored at -20°C for up to 4 weeks or stored at 4°C for up to 1 week.

12 Programming and analysis

Details for programming and analysis are described in the Section 20 – Section 28.

The **Resistance**Plus[®] GC kit uses five channels for detection of *N. gonorrhoeae* via the *opa* and *porA* genes, *gyrA* S91 wild type, *gyrA* S91F mutation and Internal Control (**Table 7**).

Table 7. Channels for <i>ResistancePlus[®] GC</i> targets					
qPCR Instrument	qPCR N. gonorrhoeae N. gonorrhoeae Instrument gyrA S91 (wild type) porA		N. gonorrhoeae gyrA S91F (mutant)	N. gonorrhoeae opa	Internal Control
	CHANNEL A	CHANNEL B	CHANNEL C	CHANNEL E	CHANNEL D
7500 Fast	FAM	JOE	Texas Red	Cy5	TAMRA
7500 Fast Dx	FAM	JOE	Texas Red	Cy5	TAMRA
LC480 II	465-510	533-580	533-610	618-660	533-640
z 480	465-510	540-580	540-610	610-670	540-645
CFX96 IVD	FAM	HEX	Texas Red	Cy5	Quasar 705
CFX96 Touch	FAM	HEX	Texas Red	Cy5	Quasar 705

Details for each instrument including programming and analysis are described in the Appendices.

13 Interpretation of results

Data interpretation requires the **Resistance**Plus[®] GC analysis software. While **Plex**Prime[®] primers offer greater specificity than other allele-specific primers, some non-specific amplification from the **Resistance**Plus[®] GC assay may be seen in samples that contain high concentrations of *N. gonorrhoeae* with *gyrA* S91 wild type in the *gyrA* S91F target channel, and vice versa. The **Resistance**Plus[®] GC analysis software automates the data interpretation of amplification results and streamlines workflow. Instructions for how to use the analysis software are described in **Section 29**.

See **Table 8** for the appropriate analysis software for each real-time PCR instrument. The analysis software can be supplied on request. Please contact <u>tech@speedx.com.au</u> for more information.

Table 8. <i>ResistancePlus</i> [®] GC analysis software				
Cat no	Analysis software*	Real-time PCR instrument		
99010	Resistance Plus [®] GC (LC480)	LC480 II		
99019	Resistance Plus [®] GC (z480)	z 480		
99009	Resistance Plus [®] GC (7500)	7500 Fast, 7500 Fast Dx		
99015	ResistancePlus [®] GC (CFX)	CFX96 IVD and CFX96 Touch		

* Refer to the website <u>https://plexpcr.com/resistanceplus-gc/resources</u> to ensure you are using the most current version of analysis software.

14 Limitations

- The *ResistancePlus®* GC assay should only be performed by personnel trained in the procedure and should be performed in accordance to these Instructions for Use.
- Reliable results are dependent on adequate specimen collection transport, storage, and processing. Failure to observe proper procedures in any one of these steps can lead to incorrect results.
- The *ResistancePlus®* GC assay is a qualitative assay and does not provide quantitative values or information about organism load.
- Results from the test must be correlated with the clinical history, epidemiological data, laboratory data and any other data available to the clinician.
- Prevalence of *N. gonorrhoeae* and gyrA S91F mutation will affect the positive and negative predictive values for the assay.
- Detection of antibiotic resistance markers may not correlate with phenotypic gene expression.
- Therapeutic failure or success cannot be determined based on the assay results, since nucleic acid may persist following appropriate antimicrobial therapy.
- Negative results do not exclude the possibility of infection due to improper specimen collection, technical error, presence of inhibitors, specimen mix up, or low numbers of organisms in the clinical specimen.
- Negative results for the resistance marker do not indicate susceptibility of detected microorganisms, as resistance markers not measured by the assay or other potential mechanisms of antibiotic resistance may be present.
- False positive results may occur due to cross-contamination by target organisms, their nucleic acids or amplified product.

15 Quality control

The ResistancePlus® GC kit includes an internal control to monitor extraction efficiency and qPCR inhibition (Section 11.3).

The *ResistancePlus*[®] GC Control kit (PI-IV0015) is recommended as positive control material for nucleic acid amplification. Refer to **Section 16** for instructions to use the *ResistancePlus*[®] GC Control kit.

16 ResistancePlus[®] GC Control instructions

The **Resistance**Plus[®] GC Control kit contains positive control material for *gyrA* wild type and *gyrA* S91F mutant, and negative amplification control material (**Table 9**).

Table 9. Cont	Table 9. Contents for <i>ResistancePlus[®]</i> GC Control kit (Cat no 95003)							
Cap colour	Contents	Description	Quantity (10 reactions)					
White	GC, gyrA wild type	Positive control template for the detection of <i>N. gonorrhoeae</i> , <i>gyrA</i> wild type	1 x 100 µl					
Green	GC, gyrA S91F mutant	Positive control template for the detection of <i>N. gonorrhoeae</i> , <i>gyrA</i> S91F mutation	1 x 100 µl					
Black	Negative Control	Negative control	1 x 100 µl					

16.1 Instructions for use

Prepare qPCR reactions as described in Section 11 or Section 30.1 using positive control material as sample.

Data interpretation requires the *ResistancePlus®* GC analysis software, refer to Section 29.11 for example results.

17 Performance characteristics

17.1 Clinical performance

17.1.1 Clinical Study 1

A clinical performance study for the **Resistance**Plus[®] GC₍₅₅₀₎ kit was conducted at the University of Queensland Centre for Clinical Research (UQCCR), Australia. 212 cobas[®] 4800 (Roche) extracts were collected between May-August 2018 from Townsville Sexual Health Services, Australia, consisting of 82 *N. gonorrhoeae* positive and 130 *N. gonorrhoeae* negative extracts, based on clinical laboratory results. Samples consisted of 101 male, 110 female specimens as well as 1 gender unspecified specimen, and included 6 pharyngeal swabs, 16 rectal swabs, 4 penile swabs, 32 vaginal swabs, 19 endocervical swabs, 3 urethral swabs, 1 peritoneal swab, 1 genital swab site-unspecified, 10 site-unspecified swabs as well as 120 urine specimens. The cobas[®] extracts were tested with the **Resistance**Plus[®] GC₍₅₅₀₎ kit on the Applied Biosystems[®] 7500 Fast Dx Instrument in a 30 µl reaction volume.

To determine performance of the **Resistance**Plus[®] GC₍₅₅₀₎ kit, *N. gonorrhoeae* detection was compared to cobas[®] CT/NG results (with positives confirmed by a *opa/porA* real-time PCR test[§]), and *gyrA* detection was compared to Sanger sequencing^{7.8}. Results are summarised in **Table 10**. Analysis of *gyrA* mutation detection only includes samples where the mutant status could be determined (9 samples failed sequencing). Overall, the **Resistance**Plus[®] GC₍₅₅₀₎ *gyrA* characterisation rate was 92.7% (76/82; 6 samples were reported as *N. gonorrhoeae* positive but *gyrA* indeterminate by the **Resistance**Plus[®] GC₍₅₅₀₎ kit (2 male pharyngeal swabs, 2 female site-unspecified, 1 female vaginal swab and 1 female urine; only 1/6 was successfully sequenced and was a S91 wild type (female vaginal swab)). Analysis of results in accordance to specimen type is shown in **Table 11**.

Table 10. Clinica	Table 10. Clinical evaluation of the <i>ResistancePlus[®]</i> GC ₍₅₅₀₎ kit (Clinical study 1)							
		N. gonorrhoe cobas®	N. gonorrhoeae detection gyrA detection cobas® CT/NG Sequencing					
		Positive* Negative S91F mutant S91 wild t						
ResistancePlus®	Positive	82	1		Mutant detected	2	0	
GC	Negative	0	129		Mutant not detected	0	70	
	Sensitivity 100.0% (95% Cl 95.6-100.0%) Sensitivity 100.0% (95% Cl 15.8-100.0%)							
	Specificity	99.2%(95% C	8 95.8-99.9%)		Specificity	100.0% (95% 0	CI 94.9-100.0%)	

* N. gonorrhoeae positives confirmed by opa/porA real-time PCR

Table 11. Clinical result analysis in accordance to specimen type (Clinical study 1)								
Specimen	Expected <i>N. gonorrhoeae</i> negative	Expected <i>N. gonorrhoeae</i> gyrA wild type	Expected <i>N. gonorrhoeae</i> gyrA S91F mutant					
Male urine	62/62	20/20	1/1					
Female urine	13/13	19/19	1/1					
Male rectal swab	13/14 ¹	1/1	-					
Male penile	-	4/4	-					
Male urethral swab	-	3/3	-					
Male pharyngeal swab	-	1/1	-					
Female pharyngeal swab	1/1	2/2	-					
Endocervical swab	13/13	6/6	-					
Vaginal swab	23/23	8/9 ²	-					
Female peritoneal swab	-	1/1	-					
Female genital swab	1/1	-	-					
Female site-unspecified	3/3	3/3	-					
Gender unknown, urine	_	1/1	_					

¹ Male rectal swab: 1 *N. gonorrhoeae* negative called as *N. gonorrhoeae* gyrA indeterminate

² Vaginal swab: 1 N. gonorrhoeae gyrA wild type called as N. gonorrhoeae gyrA indeterminate

17.1.2 Clinical Study 2

A clinical performance study for the *ResistancePlus*[®] GC₍₅₅₀₎ kit was conducted at the Molecular Microbiology Laboratory, Royal Prince Alfred Hospital, Australia. Samples were collected between May-July 2018, using Aptima[®] urine and Aptima[®] unisex swab specimen collection kits, consisting of 164 *N. gonorrhoeae* positive and 55 *N. gonorrhoeae* negative samples. The 219 samples consisted of 179 male and 35 female specimens, including 80 pharyngeal swabs, 70 rectal swabs, 8 vaginal swabs, 4 cervical swabs, 2 urethral swabs, 1 eye swab and 1 site unspecified swab as well as 53 urine specimens. The samples were extracted on the EZ1 Advanced XL (Qiagen).

17.1.2.1 Performance of the *ResistancePlus*® GC₍₅₅₀₎ kit on the 7500 Fast

To determine performance of the **Resistance**Plus[®] GC₍₅₅₀₎ kit, *N. gonorrhoeae* detection was compared to Aptima[®] Combo 2 results (with positives confirmed by the Aptima[®] *Neisseria gonorrhoeae* assay), and *gyrA* detection was compared to Sanger sequencing^{7.8}. The **Resistance**Plus[®] GC₍₅₅₀₎ kit was run on the 7500 Fast in a 30 µl reaction volume, and results are summarised in **Table 12**. Analysis of *gyrA* mutation detection only includes samples where the mutant status could be determined (a subset of 146 samples were sequenced; 34 samples failed sequencing). Overall, the **Resistance**Plus[®] GC₍₅₅₀₎ gyrA characterisation rate was 90.7% (136/150; 14 samples were reported as *N. gonorrhoeae* positive but *gyrA* indeterminate by the **Resistance**Plus[®] GC₍₅₅₀₎ kit (1 female urine, 4 male rectal swabs, 9 male pharyngeal swabs; 11 samples failed sequencing, 3 samples were not available for sequencing). Analysis of results in accordance to specimen type is shown in **Table 13**.

Table 12. Clinical evaluation of the <i>ResistancePlus</i> [®] GC ₍₅₅₀₎ kit (Clinical study 2)							
		N. gonorrhoe Aptima®	eae detection Combo 2			<i>gyrA</i> de Seque	etection encing
	Positive* Negative S91F mutant S91						S91 wild type
ResistancePlus®	sistancePlus [®] Positive 150 0 Mutan	Mutant detected	31	0			
GC ₍₅₅₀₎	Negative	14^	50		Mutant not detected	0	81
				1			
Sensitivity 91.5% (95% Cl 86.1-95.3%) Sensitivity 100.0% (95% Cl 88.8-100)							CI 88.8-100.0%)
	Specificity	100.0% (95% C	CI 92.9-100.0%)		Specificity	100.0% (95% C	CI 95.6-100.0%)

* N. gonorrhoeae positives confirmed by Aptima® Neisseria gonorrhoeae assay

^ 10/14 false negative samples were also N. gonorrhoeae negative with an in-house porA qPCR assay

Table 13. Clinical result analy	Table 13. Clinical result analysis in accordance to specimen type (Clinical study 2)							
Specimen	Expected <i>N. gonorrhoeae</i> negative	Expected <i>N. gonorrhoeae gyrA</i> wild type	Expected <i>N. gonorrhoeae</i> gyrA S91F mutant					
Male urine	14/14	19/19	3/3					
Female urine	8/8	1/1	1/1					
Male rectal swab	9/9	33/33	11/11					
Female rectal swab	-	1/1	-					
Male urethral swab	1/1	-	1/1					
Male pharyngeal swab	7/7	25/25	7/7					
Female pharyngeal swab	3/3	-	4/4					
Cervical swab	3/3	1/1	-					
Vaginal swab	4/4	-	4/4					
Female eye Swab	-	1/1	-					
Female site unspecified swab	1/1	-	-					

17.1.2.2 Performance of the ResistancePlus® GC₍₆₁₀₎ at 30 µl reaction on the LC480 II

To determine performance of the **Resistance**Plus[®] GC₍₆₁₀₎ kit, *N. gonorrhoeae* detection was compared to Aptima[®] Combo 2 results (with positives confirmed by the Aptima[®] *Neisseria gonorrhoeae* assay), and *gyrA* detection was compared to Sanger sequencing^{7.8}. The **Resistance**Plus[®] GC₍₆₁₀₎ kit was run on the LC480 II in a 30 µl reaction volume, and results are summarised in **Table 14**. Analysis of *gyrA* mutation detection only includes samples where the mutant status could be determined (a subset of 144 samples were sequenced; 32 samples failed sequencing; 1 sample was *N. gonorrhoeae* positive but *gyrA* indeterminate by the **Resistance**Plus[®] GC₍₆₁₀₎ kit). Overall, the **Resistance**Plus[®] GC₍₆₁₀₎ gyrA characterisation rate was 90.1% (135/150; 15 samples were reported as *N. gonorrhoeae* positive but *gyrA* indeterminate by the **Resistance**Plus[®] GC₍₆₁₀₎ kit (1 female urine, 6 male rectal swabs, and 8 male pharyngeal swabs; only 1/15 was successfully sequenced and was a S91 wild type (male pharyngeal throat swab)).

Table 14. Clinical evaluation of the ResistancePlus [®] GC(610) kit (Clinical study 2)								
		N. gonorrhoe Aptima®	eae detection Combo 2			<i>gyrA</i> detection Sequencing		
		Positive*	Negative			S91F mutant	S91 wild type	
ResistancePlus®	Positive	150	0		Mutant detected	31	0	
GC ₍₆₁₀₎	Negative	14^	54	Mutant not detected	0	80		
		-			1	-		
Sensitivity 91.5% (95% Cl 86.1-95.3%) Sensitivity 100.0% (95% Cl 88.8-100.0)							CI 88.8-100.0%)	
	Specificity	100.0% (95% C	CI 93.4-100.0%)		Specificity	100.0% (95%	CI 93.3-99.9%)	

* N. gonorrhoeae positives confirmed by Aptima® Neisseria gonorrhoeae assay

^ 8/14 false negative samples were also N. gonorrhoeae negative with an in-house porA qPCR assay

17.1.2.3 Performance of the ResistancePlus® GC₍₆₁₀₎ at 30 µl and 20 µl reaction volumes

A subset of samples were compared at 30 μ l and 20 μ l reaction volumes with the **Resistance**Plus[®] GC₍₆₁₀₎ kit on the LC480 II. Results are summarised in **Table 15**. Analysis of *gyrA* mutation detection only includes samples where the mutant status could be determined (9 samples were *N. gonorrhoeae* positive but *gyrA* indeterminate when tested at both reaction volumes, with an additional 12 samples for 20 μ l reaction volume only, and 1 sample at 30 μ l reaction volume only).

Table 15. Compa	rison of Resi	stancePlus® G	C ₍₆₁₀₎ kit in 30 μ	ıl a	nd 20 µl reaction volu	umes (Clinical	study 2)
N. gonor Resistance			eae detection s [®] GC ₍₆₁₀₎ (30 μl)			gyrA de ResistancePlus	etection s [®] GC ₍₆₁₀₎ (30 μl)
Positive			Negative			Mutant detected	Mutant not detected
ResistancePlus®	Positive	117	4		Mutant detected	27	0
GC ₍₆₁₀₎ (20 μl)	Negative	5	56		Mutant not detected	0	68
	Sensitivity	95.6% (95% C		Sensitivity	100.0% (95% CI 78.2-100.0%)		
	Specificity	93.3% (95% C	CI 83.8-98.2%)		Specificity	100.0% (95% C	CI 94.7-100.0%)

17.1.3 Clinical Study 3

Performance of the **Resistance**Plus[®] GC₍₅₅₀₎ kit on *N. gonorrhoeae* clinical isolates was evaluated at the University of Queensland Centre for Clinical Research (UQCCR), Australia. 30 *N. gonorrhoeae* clinical isolates collected in New South Wales (NSW) as part of an Australian national surveillance study in 2014, consisting of isolates from both females (n=2) and males (n=28), collected from the cervix (n=2), rectum (n=5), pharynx (n=4) and urine (n=19). Of the 30 isolates, 15 had the *gyrA* S91F genotype and were resistant to ciprofloxacin and 15 were wild type S91 and were susceptible to ciprofloxacin. The isolates were processed following the boilate method (**Section 11.4**), and tested on the 7500 Fast Dx Instruments in a 30 µl reaction volume.

The performance of the *ResistancePlus*[®] GC₍₅₅₀₎ kit for *gyrA* detection was compared to the genotype as determined by whole genome sequencing (WGS), and ciprofloxacin phenotype as determined by antibiotic susceptibility testing $(AST)^{g}$. Results are summarised in **Table 16**.

Table 16. Evaluat	tion of the Re	sistancePlus®	GC ₍₅₅₀₎ kit on /	V. g	onorrhoeae clinic	al isolates (Clin	ical study 3)	
		Genotype WGS			Phenotype Ciprofloxacin AST			
		<i>gyrA</i> S91F mutant	<i>gyrA</i> wild type			Resistant (MIC > 1.0 mg/L)	Susceptible (MIC < 1.0 mg/L)	
ResistancePlus®	Mutant detected	15	0		Mutant detected	15	0	
GC ₍₅₅₀₎	Mutant not detected	0	15	15	Mutant not detected	0	15	
Sensitivity 100.0% (95% Cl 78.2-100.0%)					Sensitivity	100.0% (95% CI 78.2-100.0%)		
	Specificity	100.0% (95% C	CI 78.2-100.0%)		Specificity	100.0% (95% C	CI 78.2-100.0%)	

17.1.4 Clinical Study 4

The performance of the *ResistancePlus*[®] $GC_{(675)}$ kit was assessed on cobas-collected samples (cobas[®] PCR Urine Sample Kit and cobas[®] PCR Media Uni Swab Sample Kit) at PathWest Laboratory Medicine, QEII Medical Centre, Western Australia.

91 *N. gonorrhoeae* positive clinical samples and 42 *N. gonorrhoeae* negative samples, which had been collected from May 2018 to September 2019, were tested. Samples were collected from 92 males and 41 females, and consisted of 18 pharyngeal swabs, 36 anal swabs, 5 penile swabs, 19 vaginal swabs, 6 cervical swabs, 7 urethral swabs and 42 urine specimens. The samples were extracted using the MagNA Pure 96 with a 100 µl elution volume and tested on the CFX96 Touch instrument as a 20 µl reaction volume.

The performance of the **Resistance**Plus[®] GC₍₆₇₅₎ kit for *N. gonorrhoeae* detection was compared to cobas[®] CT/NG (performed according to the manufacturer's instructions) and *gyrA* detection was compared to an in-house Sanger sequencing assay. Results are summarised in **Table 17**. All samples were successfully sequenced. Overall, the **Resistance**Plus[®] GC₍₆₇₅₎ gyrA characterisation rate was 98.9% (90/91); 1 male pharyngeal sample was reported as *N. gonorrhoeae* positive but gyrA indeterminate by the **Resistance**Plus[®] GC₍₆₇₅₎ kit. Sanger sequencing determined this specimen to be S91 wildtype. Analysis of results in accordance to specimen type is shown in **Table 18**.

Table 17. Clinical evaluation of the <i>ResistancePlus</i> [®] GC ₍₆₇₅₎ kit (Clinical study 4)									
		N. gonorrhoe cobas®	eae detection CT/NG			gyrA detection Sequencing			
		Positive	Negative			S91F mutant	S91 wild type		
ResistancePlus®	Positive	91	2		Mutant detected	41	0		
GC	Negative	0	40		Mutant not detected	0	49		
				1					
Sensitivity 100.0% (95% Cl 96.0-100.0%) Sensitivity 100.0% (95% Cl 91.4-100.0%)							CI 91.4-100.0%)		
	Specificity	95.2% (95% C	01 83.8-99.4%)		Specificity	100.0% (95% C	CI 92.6-100.0%)		

Table 18. Clinical result analysis in accordance to specimen type (Clinical study 4)								
Specimen	Expected <i>N. gonorrhoeae</i> negative	Expected <i>N. gonorrhoeae</i> gyrA wild type	Expected <i>N. gonorrhoeae</i> gyrA S91F mutant					
Male urine	2/2	15/15	14/14					
Female urine	6/6	5/5	-					
Male anal swab	10/11 ¹	10/10	12/12					
Female anal swab	2/2	1/1	-					
Male pharyngeal swab	2/3 ²	3/4 ³	9/9					
Female pharyngeal swab	-	1/1	1/1					
Male urethral swab	-	6/6	1/1					
Penile swab	-	3/3	2/2					
Cervical swab	5/5	1/1	-					
Vaginal swab	13/13	4/4	2/2					

¹ 1 male anal swab was false positive "*N. gonorrhoeae* detected, gyrA mutation detected."

² 1 male pharyngeal swab was false positive "*N. gonorrhoeae* detected, gyrA indeterminate."

³ 1 gyrA S91 wild type male pharyngeal swab was called "*N. gonorrhoeae* detected, gyrA indeterminate."

17.1.5 Clinical Study 5

A clinical performance study for the **Resistance**Plus[®] $GC_{(610)}$ kit on contrived samples was conducted at the Queensland Paediatric Infectious Disease Group (QPID), Queensland, Australia. The samples consisted of 90 female urogenital (vaginal) swabs and 90 male first void urine samples collected in cobas[®] PCR media. The specimen types were separated into "Panels" A and B. Each panel consisted of 30 negative samples, 30 *N. gonorrhoeae* positive for wild-type (*gyra* S91S genotype), and 30 *N. gonorrhoeae* positive samples for a mutant (*gyra* S91F genotype). Within these panels were 10 of each low, mid and high positive samples for both the wild-type and mutant strains. The internal control was added prior to extraction and extracted using the MagNAPure96 DNA and Viral NA Small Volume kit. All samples were extracted using the MagNA Pure 96 with a 100 µl elution volume and tested on the z 480 instrument as a 20 µl reaction volume.

The average Cq and standard deviation for the IC assay in each sample type is shown in **Table 19**. One vaginal swab sample extracted with IC was found to be invalid (see **Table 19**.). This sample was re-run, and the IC was valid on repeat. This gives an IC invalid rate of 0.55% for Panels A and B.

Table 19. Performance o	Table 19. Performance of the Internal Control in collected N. gonorrhoeae positive specimens						
		Cq Average	Standard deviation	Total number			
	All samples	25.19	0.51	181			
ResistancePlus [®] GC ₍₆₁₀₎	Vaginal swabs only (Panel A)	25.05	0.52	91			
	Urine only (Panel B)	25.32	0.47	90			
	IC invalid rate		0.55% (1/181)				

17.1.5.1 Performance of the ResistancePlus® GC₍₆₁₀₎ kit

The **Resistance**Plus[®] GC₍₆₁₀₎ kit demonstrated clinical performance of >95% PPA, NPA and ORA for GC and *gyrA*-S91F mutation detection when compared to the expected result. The performance of the **Resistance**Plus[®] GC₍₆₁₀₎ is summarised in **Table 20** and **Table 21** below.

Table 20. Clinical evaluation of the *ResistancePlus*[®] GC₍₆₁₀₎ kit with contrived sample extracts – Vaginal Swab Samples (Panel A) (Clinical study 5)

N generrhease detection*		Expected Result			<i>gyrA</i> mutant/wildtype	Expected Result	
N. gonorrhoeae det	ection	Positive Negative detecti		detection^	S91F mutant	S91 Wild type	
ResistancePlus®	Positive	60	1^		Mutant detected	30	0
GC ₍₆₁₀₎	Negative	0	29		Mutant not detected	0	30
PPA		100.00% (9 100	5% CI 94.04-).00)		РРА	100.00% (99 100	5% CI 88.43-).00)
NPA 96.67% (95% CI 80.4-99.4		o CI 80.4-99.8)		РРА	100.00% (99 100	5% CI 88.43-).00)	
ORA		98.89% (95% CI 93.9-99.97)			ORA	100.00% (99 100	5% CI 94.04-).00)

¹One vaginal swab sample incorrectly called positive for GC and indeterminate for gyrA-S91F, the expected result was negative.

Table 21. Clinical evaluation of the ResistancePlus® GC₍₆₁₀₎ kit with contrived sample extracts – Urine Samples (Panel B) (Clinical study 5) **Expected Result Expected Result** gyrA mutant/wildtype N. gonorrhoeae detection detection* S91 Positive Negative S91F mutant Wild type Positive 60 0 Mutant detected 29 0 ResistancePlus® GC(610) Negative 0 30 Mutant not detected 0 31 100.00% (95% CI 94.04-100.00% (95% CI 88.06-PPA PPA 100.00) 100.00) 100.00% (95% CI 88.43-100.00% (95% CI 88.78-NPA PPA 100.00) 100.00) 100.00% (95% CI 95.98-100.00% (95% CI 94.04-ORA ORA 100.00) 100.00)

17.2 Analytical performance

17.2.1 Reproducibility and repeatability (7500 Fast and 7500 Fast Dx)

The reproducibility of the **Resistance**Plus[®] GC₍₅₅₀₎ kit was assessed using quantified extracted genomic material, *N. gonorrhoeae gyrA* wild type strain (ATCC:700825; FA 1090) and *gyrA* S91F mutant strain (clinical isolate), tested at 3x LOD. Experiments utilizing 20 μ l reaction volumes were performed on the 7500 Fast and experiments utilizing 30 μ l reaction volumes were performed on the 7500 Fast Dx.

To determine the lot-to-lot variability, two lots were tested, run on one machine, performed by one operator. For the 30 µl reaction (**Table 22**), the two lots showed good reproducibility with coefficient of variation (%CV) between 0.61-1.88%.

Table 22. Lot-to-lot variability (30 μl reaction volume)							
Strain	Target	Average Cq	STDEV	%CV	# Samples		
	opa	23.61	0.31	1.29	12/12		
N. gonorrhoeae	porA	25.06	0.19	0.75	12/12		
gyra wild type	gyrA S91 wild type	24.34	0.22	0.91	12/12		
	opa	23.65	0.14	0.61	12/12		
N. gonorrhoeae	porA	25.37	0.31	1.21	12/12		
gyra matant	gyrA S91F mutant	29.25	0.55	1.88	12/12		

For lot-to-lot variability for the 20 µl reaction (**Table 23**), the two lots showed good reproducibility with coefficient of variation (%CV) between 0.61-1.40%.

Table 23. Lot-to-lot variability (20 µl reaction volume)								
Strain	Target	Average Cq	STDEV	%CV	# Samples			
N. gonorrhoeae	ора	23.03	0.14	0.61	12/12			
	porA	24.78	0.23	0.92	12/12			
gyra wild type	gyrA S91 wild type	24.26	0.26	1.09	12/12			
	ора	22.52	0.16	0.70	12/12			
N. gonorrhoeae	porA	24.54	0.27	1.10	12/12			
gyra mutant	gyrA S91F mutant	28.64	0.40	1.40	12/12			

To determine the day-to-day variability, testing was performed over three days, by one operator on the same machine. For the 30 μ l reaction (**Table 24**), the three runs showed good reproducibility with coefficient of variation (%CV) between 1.13-2.31%.

Table 24. Day-to-day variability (30 μl reaction volume)								
Strain	Target	Average Cq	STDEV	%CV	# Samples			
	opa	24.08	0.56	2.31	18/18			
N. gonorrhoeae	porA	25.31	0.39	1.54	18/18			
gyra wild type	gyrA S91 wild type	24.88	0.45	1.80	18/18			
N. gonorrhoeae gyrA mutant	ора	23.95	0.27	1.15	18/18			
	porA	25.66	0.45	1.75	18/18			
	gyrA S91F mutant	29.83	0.34	1.13	18/18			

For day-to-day variability for the 20 µl reaction (**Table 25**), the three runs performed over the 3 days showed good reproducibility with coefficient of variation (%CV) between 0.65-3.23%.

Table 25. Day-to-day variability (20 μl reaction volume)							
Strain	Target	Average Cq	STDEV	%CV	# Samples		
	opa	23.24	0.29	1.26	18/18		
N. gonorrhoeae	porA	24.99	0.16	0.65	18/18		
gyrA wild type	gyrA S91 wild type	24.88	0.56	2.25	18/18		
	opa	23.13	0.75	3.23	18/18		
N. gonorrhoeae gyrA mutant	porA	25.18	0.71	2.81	18/18		
	gyrA S91F mutant	28.92	0.77	2.65	18/18		

To determine the run-to-run variability, three qPCR runs were compared, run on the same day by the same operator. For the $30 \ \mu$ l reaction (**Table 26**), the three runs showed good reproducibility with coefficient of variation (%CV) between 0.69-1.78%.

Table 26. Run-to-run variability (30 μl reaction volume)								
Strain	Target	Average Cq	STDEV	%CV	# Samples			
N. gonorrhoeae	ора	24.37	0.43	1.76	18/18			
	porA	25.45	0.38	1.50	18/18			
gyra wild type	gyrA S91 wild type	25.10	0.45	1.78	18/18			
N. gonorrhoeae	ора	24.11	0.17	0.69	18/18			
	porA	25.91	0.33	1.28	18/18			
gyra matant	gyrA S91F mutant	30.06	0.34	1.12	18/18			

For run-to-run variability for the 20 µl reaction (**Table 27**), the three runs showed good reproducibility with coefficient of variation (%CV) between 0.83-1.30%.

Table 27. Run-to-run variability (20 µl reaction volume)								
Strain	Target	Average Cq	STDEV	%CV	# Samples			
	ора	23.10	0.30	1.30	18/18			
N. gonorrhoeae	porA	24.79	0.22	0.87	18/18			
gyra wild type	gyrA S91 wild type	25.16	0.22	0.88	18/18			
	ора	22.61	0.21	0.94	18/18			
N. gonorrhoeae gyrA mutant	porA	24.67	0.21	0.83	18/18			
	gyrA S91F mutant	28.51	0.31	1.08	18/18			

To determine the operator variability, two runs were compared from two operators. For the 30 μ I reaction (**Table 28**), the two runs performed by different operators showed good reproducibility with coefficient of variation (%CV) between 1.21-2.71%.

Table 28. Operator variability (30 μl reaction volume)								
Strain	Target	Average Cq	STDEV	%CV	# Samples			
	ора	24.08	0.65	2.71	12/12			
N. gonorrhoeae	porA	25.38	0.46	1.79	12/12			
gyrA wild type	gyrA S91 wild type	24.81	0.52	2.11	12/12			
	ора	23.97	0.31	1.30	12/12			
N. gonorrhoeae	porA	25.75	0.50	1.93	12/12			
gyra mutant	gyrA S91F mutant	29.83	0.36	1.21	12/12			

For operator variability for the 20 μ I reaction (Table 29), the two runs performed by different operators showed good reproducibility with coefficient of variation (%CV) between 0.48-2.23%.

Table 29. Operator variability (20 μl reaction volume)								
Strain	Target	Average Cq	STDEV	%CV	# Samples			
N. gonorrhoeae	ора	23.07	0.13	0.56	12/12			
	porA	24.91	0.14	0.56	12/12			
gyra wild type	gyrA S91 wild type	24.67	0.55	2.23	12/12			
	ора	22.63	0.11	0.48	12/12			
N. gonorrhoeae	porA	24.72	0.22	0.88	12/12			
gyra mutant	gyrA S91F mutant	28.45	0.34	1.20	12/12			

To determine the instrument variability, two runs performed on two different instruments were compared. For the 30 μ I reaction (**Table 30**), the two runs performed on different instruments showed good reproducibility with coefficient of variation (%CV) between 1.20-3.42%.

Table 30. Instrument variability (30 μl reaction volume)								
Strain	Target	Average Cq	STDEV	%CV	# Samples			
	ора	24.52	0.54	2.19	12/12			
N. gonorrhoeae	porA	25.42	0.39	1.52	12/12			
gyra wild type	gyrA S91 wild type	25.35	0.43	1.70	12/12			
<i>N. gonorrhoeae gyrA</i> mutant	ора	24.21	0.76	3.12	12/12			
	porA	25.92	0.89	3.42	12/12			
	gyrA S91F mutant	29.72	0.36	1.20	12/12			

For instrument variability for the 20 μ l reaction (**Table 31**), the two runs performed showed good reproducibility with coefficient of variation (%CV) between 0.58-1.73%.

Table 31. Instrument variability (20 μl reaction volume)								
Strain	Target	Average Cq	STDEV	%CV	# Samples			
<i>N. gonorrhoeae gyrA</i> wild type	ора	22.96	0.25	1.11	12/12			
	porA	24.74	0.31	1.27	12/12			
	gyrA S91 wild type	24.95	0.43	1.73	12/12			
	ора	22.59	0.13	0.58	12/12			
N. gonorrhoeae gyrA mutant	porA	24.55	0.29	1.18	12/12			
	gyrA S91F mutant	28.58	0.28	0.97	12/12			

17.2.2 Reproducibility and repeatability (CFX96 IVD and CFX96 Touch)

The reproducibility of the **Resistance**Plus[®] GC₍₆₇₅₎ kit was assessed using quantified extracted genomic material, *N. gonorrhoeae gyrA* wild type strain (ATCC:700825; FA 1090) and *gyrA* S91F mutant strain (clinical isolate), tested at 3x LOD. Each material was tested in replicates of ten twice daily over three days, by two operators using two different lots of the **Resistance**Plus[®] GC₍₆₇₅₎ kit and two different CFX96 instruments (one CFX96 IVD, and one CFX96 Touch). All replicates were tested with 20 ul reaction volume.

To determine the lot-to-lot variability, two lots were tested, run on two instruments, performed by two operators, over three days. The two lots showed good reproducibility with coefficient of variation (%CV) between 0.15-3.59% (**Table 32**).

Table 32. Lot-to-lot variability								
Strain	Target	Average Cq	STDEV	%CV	# Samples			
<i>N. gonorrhoeae gyrA</i> wild type	opa	22.34	0.03	0.15	60/60			
	porA	24.03	0.13	0.53	60/60			
	gyrA S91 wild type	24.92	0.89	3.59	60/60			
N. gonorrhoeae gyrA mutant	ора	23.07	0.16	0.71	60/60			
	porA	24.91	0.13	0.52	60/60			
	gyrA S91F mutant	29.30	0.28	0.94	60/60			

To determine the day-to-day variability, two lots were tested on two instruments, performed by two operators, over three days. The two lots showed good reproducibility with coefficient of variation (%CV) between 0.15-3.59% (**Table 33**).

Table 33. Day-to-day variability								
Strain	Target	Average Cq	STDEV	%CV	# Samples			
	ора	22.34	0.23	1.01	60/60			
N. gonorrhoeae	porA	24.03	0.19	0.78	60/60			
gyra wild type	gyrA S91 wild type	24.92	0.03	0.14	60/60			
	ора	23.07	0.11	0.46	60/60			
N. gonorrhoeae	porA	24.91	0.04	0.15	60/60			
gyra mutant	gyrA S91F mutant	29.30	0.26	0.89	60/60			

17.2.3 Analytical sensitivity

The analytical sensitivity of the **Resistance**Plus[®] GC kit was established on the 7500 Fast Dx using 30 µl reaction volume by running a limited dilution series, using quantified extracted genomic material, *N. gonorrhoeae gyrA* wild type strain (ATCC:700825; FA 1090) and *N. gonorrhoeae gyrA* S91F mutant strain (clinical isolate). The sensitivity for each target was determined as the number of genomes per reaction detected with \ge 95% of replicates performed (**Table 34**). The LOD (genomes per reaction) of each representative strain of *N. gonorrhoeae* was confirmed for the 7500 Fast, LC480 II, CFX96 IVD, CFX96 Touch, and z 480 for a 30 ul reaction volume, and confirmed for the 7500 Fast, DX 480 II, CFX96 IVD, CFX96 Touch, and z 480 for a 20 µl reaction volume.

Table 34. Analytical sensitivity				
Strain	Limit of detection (genomes/reaction)			
N. gonorrhoeae gyrA wild type	15			
<i>N. gonorrhoeae gyrA</i> mutant	15			

17.2.4 Inclusivity

All inclusivity strains were tested using 20 μ l and 30 μ l reaction volumes. Each inclusivity strain of *N. gonorrhoeae* was tested at 1x LOD genomes per reaction. All testing using 20 μ l reaction volumes was performed on the 7500 Fast and all testing using 30 μ l reaction volumes was performed on the 7500 Fast Dx. All inclusivity strains achieved \geq 95% detection (**Table 35**).

Table 35. Analytical inclusivity						
Otacia	and status	20 µl Reaction volume	30 µl Reaction volume			
Strain	gyrA status	# Replicates	# Replicates			
WHO B	S91F mutant	20/20	20/20			
WHO C	S91 wild type	20/20	20/20			
WHO F	S91 wild type	20/20	20/20			
WHO G	S91F mutant	20/20	20/20			
WHO K	S91F mutant	20/20	20/20			
WHO L	S91F mutant	19/20	20/20			
WHO M	S91F mutant	20/20	20/20			
WHO N	S91F mutant	19/20	19/20			
WHO P	S91 wild type	20/20	20/20			
WHO X	S91F mutant	20/20	20/20			
WHO Z	S91F mutant	20/20	20/20			
FC428	S91F mutant	20/20	20/20			

17.2.5 Analytical specificity

The **Resistance**Plus[®] GC kit was designed to be specific for the target organism *N. gonorrhoeae* as well as markers for resistance/susceptibility, by checking for homology to non-target organisms in public sequence databases. All testing using 20 μ l reaction volumes was performed on the 7500 Fast and all testing using 30 μ l reaction volumes was performed on the 7500 Fast and all testing using 30 μ l reaction volumes was performed on the 7500 Fast and all testing using 30 μ l reaction volumes was performed on the 7500 Fast Dx. Each organism was tested at the stated concentration. Specificity testing for selected organisms did not show cross-reactivity (**Table 36**).

Table 36. Analytical specificity	
Organism	Test concentration
	(copies/reaction)
Candida albicans (3153A)	10 ⁴
Chlamydia trachomatis (LGV II 434)	10 ⁴
Chlamydophila pneumoniae (CM-1)	10 ⁴
Cytomegalovirus (AD169-BAC isolate)	104
Enterococcus faecalis (Portland)	10 ⁶
Epstein-Barr virus (Human herpes virus 4)	104
Escherichia coli (Crooks)	10 ⁶
Haemophilus influenzae (Rd KW20)	10 ⁶
Herpes simplex virus 1 (McIntyre)	10 ⁴
Herpes simplex virus 2 (MS)	10 ⁴
Klebsiella oxytoca (Flugge) Lautrop	10 ⁶
Legionella pneumophila (Philadelphia-1)	10 ⁴
Listeria monocytogenes (Li 23)	10 ⁶
Moraxella osloensis (clinical isolate)	10 ⁵
Mycoplasma genitalium (G37)	10 ⁴
Mycoplasma hominis (ZK-CU2)	10 ⁴
Mycoplasma pneumoniae (FH strain of Eaton Agent)	10 ⁶
Neisseria cinerea (clinical isolate)	10 ⁵
Neisseria flavescens (clinical isolate)	10 ⁵
Neisseria lactamica (clinical isolate)	10 ⁴
Neisseria meningitidis (clinical isolate)	10 ⁵
Neisseria mucosa (clinical isolate)	10 ⁵
Neisseria polysaccharea (clinical isolate)	10 ⁵
Neisseria sicca (clinical isolate)	10 ⁵
Neisseria subflava (clinical isolate)	10 ⁵
Neisseria weaverii (clinical isolate)	10 ⁵
Pseudomonas aeruginosa (PAO1-LAC)	10 ⁶
Salmonella typhimurium	10 ⁴
Staphylococcus aureus	10 ⁴
Streptococcus agalactiae (2603V/R)	10 ⁵
Streptococcus pneumoniae (R6)	10 ⁴
Streptococcus salivarius (275 (DSM 20560))	10 ⁶

Treponema pallidum (Nichols strain)	10 ³
Trichomonas vaginalis	10 ⁴
Ureaplasma parvum	10 ⁴
Ureaplasma urealyticum (960)	10 ³

17.2.6 <u>Competitive interference</u>,

To study competitive interference, the **Resistance**Plus[®] GC kit was tested in contrived samples simulating co-infections. Testing was performed with each potential interfering organism mixed with each representative strain of a *N. gonorrhoeae gyrA* wild type strain (ATCC:700825; FA 1090) and *N. gonorrhoeae gyrA* S91F mutant strain (clinical isolate) at 3x LOD. All testing using 20 µl reaction volumes was performed on the 7500 Fast and all testing using 30 µl reaction volumes was performed on the 7500 Fast Dx. Results indicated that none of these organisms interfered with detection of each representative strain of *N. gonorrhoeae* at the stated concentrations (**Table 37**).

Table 37. Competitive interference					
		# Samples detected			
Organism	Concentration (copies/reaction)	<i>N. gonorrhoeae</i> S91 wild type strain (3x LOD)	N. gonorrhoeae S91F mutant strain (3x LOD)		
Moraxella osloensis (clinical isolate)	10 ⁵	3/3	3/3		
Neisseria cinerea (clinical isolate)	10 ⁵	3/3	3/3		
Neisseria flavescens (clinical isolate)	10 ⁵	3/3	3/3		
Neisseria lactamica (clinical isolate)	10 ⁴	3/3	3/3		
Neisseria meningitidis (clinical isolate)	10 ⁵	3/3	3/3		
Neisseria mucosa (clinical isolate)	10 ⁵	3/3	3/3*		
Neisseria polysaccharea (clinical isolate)	10 ⁵	3/3	3/3		
Neisseria sicca (clinical isolate)	10 ⁵	3/3	3/3		
Neisseria subflava (clinical isolate)	10 ⁴	3/3	3/3*		
Neisseria weaverii (clinical isolate)	105	3/3	3/3		

**N. gonorrhoeae* S91F mutant strains may be called as *N. gonorrhoeae* S91 wild type when non-target organism is present in a co-infection above the stated concentration.

17.2.7 Potentially interfering substances

The effect of potential interfering substances on the **Resistance**Plus[®] GC kit was assessed in contrived samples through the performance of the Internal Control, which monitors extraction and qPCR inhibition. Whole blood added to negative samples (PBS only) was tested, and the High Abnormal MAS[®] Urinalysis (Thermo Scientific) was tested as a urine control sample which contains high abnormal urine metabolites (bilirubin, blood, creatinine, crystals, glucose, hCG, ketones, leukocyte esterase, microalbumin, nitrite, osmolality, pH, potassium, protein, red blood cells, sodium, specific gravity, urobilinogen, and white blood cells). Samples were extracted with the *Internal Control Cells* and assessed with the Internal Control assay. A minor shift (Δ Cq < 0.5) in the Internal Control signal was observed in the presence of the substances which did not affect detection (**Table 38**).

Table 38. Potentially interfering substances					
Substance	Concentration	IC Average Cq	STDEV	ΔCq	# Samples detected
		26.7	0.09		3/3
Whole Blood	10% (v/v)	27.1	0.07	0.44	3/3
Urinalysis	n/a	26.7	0.18	0.01	3/3

18 Customer and technical support

Please contact Technical Support for questions on reaction setup, cycling conditions and other enquiries.

Tel: +61 2 9209 4169, Email: tech@speedx.com.au

19 References

- 1. Unemo, M. and Jensen, J. S. (2017) 'Antimicrobial-resistant sexually transmitted infections: gonorrhoea and Mycoplasma genitalium', *Nature Reviews Urology*. Nature Research. doi: 10.1038/nrurol.2016.268.
- 2. Unemo, M. and Shafer, W. M. (2014) 'Antimicrobial resistance in Neisseria gonorrhoeae in the 21st Century: Past, evolution, and future', *Clinical Microbiology Reviews*, 27(3), pp. 587–613. doi: 10.1128/CMR.00010-14.
- 3. Grad, Y. H. *et al.* (2016) 'Genomic epidemiology of gonococcal resistance to extended spectrum cephalosporins, macrolides, and fluoroquinolones in the US, 2000-2013', *Journal of Infectious Diseases*.
- 4. Trembizki, E., Guy, R., *et al.* (2016) 'Further evidence to support the individualised treatment of gonorrhoea with ciprofloxacin', *The Lancet Infectious Diseases*. Elsevier Ltd, 16(9), pp. 1005–1006. doi: 10.1016/S1473-3099(16)30271-7.
- 5. Harris, S. R. *et al.* (2018) 'Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey', *The Lancet Infectious Diseases*, 18(7), pp. 758–768. doi: 10.1016/S1473-3099(18)30225-1.
- Goire, N. et al. (2008) 'A duplex Neisseria gonorrhoeae real-time polymerase chain reaction assay targeting the gonococcal porA pseudogene and multicopy opa genes', *Diagnostic Microbiology and Infectious Disease*, 61(1), pp. 6–12. doi: 10.1016/j.diagmicrobio.2007.12.007.
- 7. Siedner, M. J. et al. (2007) 'Real-time PCR assay for detection of quinolone-resistant Neisseria gonorrhoeae in urine samples', Journal of Clinical Microbiology, 45(4), pp. 1250–1254. doi: 10.1128/JCM.01909-06.
- Buckley, C. et al. (2016) 'A real-time PCR assay for direct characterization of the Neisseria gonorrhoeae GyrA 91 locus associated with ciprofloxacin susceptibility', *Journal of Antimicrobial Chemotherapy*, 71(2), pp. 353–356. doi: 10.1093/jac/dkv366
- Trembizki, E., Wand, H., et al. (2016) 'The Molecular Epidemiology and Antimicrobial Resistance of Neisseria gonorrhoeae in Australia: A Nationwide Cross-Sectional Study, 2012', *Clinical infectious diseases: an official publication of the Infectious Diseases Society of America*, 63(12), pp. 1591–1598. doi: 10.1093/cid/ciw648.

20 Appendix 1: LightCycler[®] 480 II programming for reaction volume of 20 µl

The following information is based on LightCycler® 480 Software (version 1.5).

The *ResistancePlus*[®] GC₍₆₁₀₎ kit contains dyes for the LightCycler[®] 480 Instrument II. The *PlexPCR*[®] Colour Compensation kit (Cat no 90001) must be run and applied for LC480 II analysis (see **Section 20.2**). This kit can be supplied on request.

20.1 Programming the LightCycler[®] 480 Instrument II (LC480 II)

Detection Format

Create a custom Detection Format

Open Tools > Detection Formats

Create a New Detection Format, and name 'SpeeDx PlexPCR' (may be created during the generation of SpeeDx Colour Compensation file) (See Figure 3)

For Filter Combination Selection select the following (Excitation-Emission):

	Table 39. Filter Combinations ^A					
LC480 II	440-488	465-510	533-580	533-610	533-640	618-660

^ These Filter Combinations are the default names for the channels

Set the Selected Filter Combination List for all channels as:

Melt Factor: 1

Quant Factor: 10

Max Integration Time (sec): 1

-Filter Combination Selection						
Emission						
E 488 510 580 610 640 660						
t 465						
a 498 🗌 🗖 🗖 🗖 🗖						
n 618 🗌 🗌 🔲 🔲 🔽						
Clear						
Selected Filter Combination List						
Excitation Emission Name Melt Quant Max Integration						
Fliter Fliter Factor Factor Time (Sec)						
440 488 440-488 1 10 1						
465 510 465-510 1 10 1						
533 580 533-580 1 10 1						
533 610 533-610 1 10 1						
533 640 533-640 1 10 1						
618 660 618-660 1 10 1						

Figure 3. Custom SpeeDx Detection Format

Instrument Settings

Create a custom **Detection Format**

Open Tools > Instruments

For Instrument Settings > select Barcode Enabled

Experiment setup

Select New Experiment

In the Run Protocol tab

For **Detection Format** select the custom 'SpeeDx PlexPCR' (Figure 4)

Select Customize >

Select Integration Time Mode > Dynamic

Select the following Active Filter Combinations shown in Table 40.

Table 40. Channels for <i>ResistancePlus[®]</i> GC targets					
Target	<i>N. gonorrhoeae gyrA</i> S91 (wild type)	N. gonorrhoeae porA	<i>N. gonorrhoeae gyrA</i> S91F (mutant)	Internal Control	N. gonorrhoeae opa
LC480 II	465-510	533-580	533-610	533-640	618-660

Dete	Detection Formats						
Det	Detection Format SpeeDx PlexPCR						
Γ ^{In}	ntegrati	on Time Mo	ode				
	Dynan	nic		C Manual			
		F 11 C					
-	Active	Filter Con	nbination				
		440-488	(440-488)				
	~	465-510	(465-510)				
	•	533-580	(533-580)				
	~	533-610	(533-610)				
	•	533-640	(533-640)				
	•	618-660	(618-660)				
				0			

Figure 4. Customize Detection Format

To enable automated sample detection in the analysis software, assign nametags to the wells on the plate

Open the Sample Editor module

Select well

Edit Sample Name to match nametag defined in Assays module of the analysis software (see Section 29.4)

Samples are labelled as *Prefix_Suffix* (as shown in **Table 41** and **Figure 5**)

NOTE: Sample nametags are case sensitive. The nametag must match exactly to those assigned in the run file.

Table 41. Sample nametags for analysis software						
Sample Type	Prefix_ (in analysis software)	_Suffix (in analysis software)	Sample Name (in LC480)			
Regular sample	Sample	_GC	Sample_GC			
Negative Control	NEG	_GC	NEG_GC			
Positive Control (MT, GC gyrA S91F) (Pa)	Pa	_GC	Pa_GC			
Positive Control (WT, GC gyrA S91) (Pb)	Pb	_GC	Pb_GC			

Figure 5. Sample Editor – Assigning nametags to wells

Pos	Filter combination	Color	Repl Of	Sample Name
Al	440-488 (440			Sample 1_GC
Al	465-510 (465			Sample 1_GC
Al	533-580 (533			Sample 1_GC
Al	533-610 (533			Sample 1_GC
Al	533-640 (533			Sample 1_GC
Al	618-660 (618			Sample 1_GC
A2	440-488 (440			Pa_GC
A 2	465-510 (465			Pa_GC
A 2	533-580 (533			Pa_GC
A 2	533-610 (533			Pa_GC
A2	533-640 (533			Pa_GC
A2	618-660 (618			Pa_GC
A3	440-488 (440			Pb_GC
A3	465-510 (465			Pb_GC
A3	533-580 (533			Pb_GC
A3	533-610 (533			Pb_GC
A3	533-640 (533			Pb_GC
A3	618-660 (618			Pb_GC
Α4	440-488 (440			NEG_GC
A4	465-510 (465			NEG_GC
A4	533-580 (533			NEG_GC
Α4	533-610 (533			NEG_GC
A4	533-640 (533			NEG_GC
Α4	618-660 (618			NEG_GC

For a 20 µl reaction

Set Reaction Volume > 20 µl

Create the following Program (shown in more detail in Figure 6 - Figure 9):

Table 42. Thermocycling Program										
Program Name	Cycles	Target °C	Hold	Ramp Rate (°C/s) [≠]						
Polymerase activation	1	95°C	2 min	4.4						
Touch down cycling⁵:	10	95°C	5 s	4.4						
Step down -0.5°C/cycle	10	61°C – 56.5°C ^δ	30 s	2.2						
Quantification cycling*:	40	95°C	5 s	4.4						
Acquisition/Detection	40	52°C⁺	40 s	2.2						
Cooling	1	40°C	30 s	2.2						

Default ramp rate (96 well plate)

⁵ Step size: -0.5°C/Cycle, Sec Target: 56°C

+ Analysis mode: Quantification, Acquisition mode: Single

Figure 6. Thermocycling Program (20 µl reaction) – Polymerase activation

J LightCycl	er® 480) Software releas	se 1.5.1.62 S	P2										
Instrument Window:	: 302 Ne	31 / Not Conn w Experimen	lected					<u> </u>	Datab User:	ase: Researc Speedx	h Database	(Research)		Roche
Experi- ment	_ Setu	p	Run Pro	tocol	Data				Run Notes					[]
Subset Editor	Dete Colo	ction Format r Comp ID	SpeeDx F	PlexPCR	Lot No	Custor	nize	Block Size 96	Test ID	Plate ID	R	eaction Volum	ne 20 🛨	6
\equiv						Prog	ams							
Sample	\bigcirc	Program N	lame								Cycles	Analys	is Mode	
Editor	A	Polymerase	activation								1	None	·	88
		Touchdown	cycling								10	None	-	
Analysis	Θ	Quantificatio	on cycling								40	Quantification	n <u>-</u>	
Report		Cooling										, None		
					Pol	lymerase activation	Tempera	ature Targets						رلصا
Sum.	A	Target	: (°C)	Acquisition Mode	Hold (hh:mm:s	s) Ramp Rate	(°C/s)	Acquisitions (p	er °C)	Sec Target (°C) Step Siz	e (°C) Step D	Delay (cycles)	6
		. 92	- 1	ione	• 00:02:00	• 4.4	•		- (- 0	- 0	-	\sim
	Θ													\otimes

J LightCycle	® 480 :	Software releas	e 1.5.1.62 SP.	2											
Instrument:	3023	1 / Not Conn	ected					Dat	abase:	Research	Database	(Research)		Racha	
Window:	Nev	v Experimen	t				•	Use	er:	Speedx				Inochie	
Experi-	Cotur		Run Proto	col		Data					Run Notes				
ment	Detec	tion Format	SpeeDx PI	exPCR		Customize	Block Size	9 6	Plate	ID	Re	eaction Volume 20	÷		
Subset Editor	Color	Comp ID			Lot No			Test	D					6	
						Programs								\square	
Sample		Program N	ame									Cycles Analysis Mode			
Editor	A	Polymerase activation									1	None	- B.	3.3	
		Touchdown	cycling								10 🚊	None	-	S	
Analysis		Quantificatio	on cycling							4	10	Quantification	-		
\square	\cong	Cooling									1 _	None	-		
Report	\sim														
moport															
					Touch	ndown cycling Tempe	rature Targe	ts							
Sum.		Target	(°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitio	ns (per °C)	Sec Ta	rget (°C)	Step Size	e (°C) Step Delay (ycles)		
\square	\oplus	95	‡ No	ne	▼ 00:00:05	€ 4.4 🛟		-	0	÷	0	0	÷	\leftarrow	
(61	÷ No	ne	00:00:30	2.2			56	÷	0.5	÷ 0	÷	Y	
	$\mathbf{\Theta}$													S	
(S	
l	•														

Figure 8. Thermocycling Program (20 µl reaction) – Quantification cycling

J LightCycle	r® 480 S	Software release 1.5	.1.62 SP2									(and (j x
Instrument:	3023	1 / Not Connecte	d					Database	Research	Database (Resea	arch)		Rasha
Window:	New	/ Experiment						User:	Speedx				nocile
Experi-	C	Ru	n Protocol]	Data		Run Notes					₽IJ
ment	Detection Format SpeeDx PlexPCR					Customize Block Size				Reaction	on Volume 🛛 🛨		
Subset Editor	Color	Comp ID			Lot No		Test ID	it ID				67	
\equiv						Programs							
Sample	\frown	Program Name	•							Cycles	Analysis Mode		
Editor	A	Polymerase acti	vation				1 🗘 Nor					-	83
		Touchdown cycl	ing							10 🗘 None		-	H
Analysis	Θ	 Quantification cy Cooling 	/cling						t	40 📮 Quan	tification		
$ \ge $	S	Cooling								- None			
Report	$\mathbf{\nabla}$												
Ľ,					Quan	tification cycling Tomp	oraturo Targote						
		Target (°C)	Acqu	isition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitions (p	er °C) Sec	Target (°C)	Step Size (°C)	Step Delay (cy	(cles)	
Sum.					,							,	$ \wedge $
	T	95	None		00:00:05	4.4		÷ 0	-	0 📫	0	÷	$\overline{\mathbf{v}}$
		52	Single		00:00:40	2.2		0	÷	0 🔅	0	<u></u>	T
	\leq												(\mathbf{X})
	$\mathbf{\vee}$												

Figure 9. Thermocycling Program (20 µl reaction) – Cooling

Cotu	Run P	rotocol		Data		Run I	lotes			누
Detec	ction Format SPEED	X PLEX PCR		Customize	Block Size 96	Plate ID B135	0213 R	eaction Volume	-	
Color	r Comp ID		Lot No		Test	ID				0>≡
				Programs						
\sim	Program Name						Cycles	Analysis Mode		
Ð	Polymerase act:	ivation					1	None	-	123
	Touch down cycl	ling					10	None	-	
Ð	Quantification	cycling					40	Quantification	-	(4
3	cooring						· .	Inone		C
										-
~				Cooling lemperature	argets					
3	larget (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitions (per °C)	Sec larget (°C)	Step Siz	e (°C) Step Delay (cyc	:les)	
$(\mathbf{+})$	¥40 ÷	None	v 00:00:30	2.2		0 -	0	÷0	-	(t)
										\geq
Ð										R
										0

> Start Run

When the cycling program has finished, export a ". ixo" file for analysis in the *ResistancePlus*® GC (LC480) analysis software.

Select Export

Save in an easily identifiable location

20.2 Colour Compensation for LightCycler[®] 480 Instrument II

NOTE: The PlexPCR[®] Colour Compensation (Cat no 90001) kit must be run and applied for LC480 II analysis. This kit can be supplied on request.

For analysis using the software, the Sample Name of the colour compensation reactions must be labelled as shown in Table 43.

When the cycling program has finished, export a ". ixo" file for analysis in the ResistancePlus® GC (LC480) analysis software.

Select Export

Save in an easily identifiable location and name as "SpeeDx PlexPCR"

Table 43. Sample Name for colour compensation reactions for the analysis software									
Reactions	BLANK	488 mix	510 mix	580 mix	610 mix	640 mix	660 mix		
Dominant Channel	Water	440-488	465-510	533-580	533-610	533-640	610-660		
Sample Name	BLANK	440-488	465-510	533-580	533-610	533-640	610-660		

20.3 Interpretation of results

Data interpretation requires the *ResistancePlus*[®] GC (LC480) analysis software. The analysis software can be supplied on request, contact tech@speedx.com.au for more information.

Refer to Section 29 for instructions on using the ResistancePlus® GC (LC480) analysis software.

21 Appendix 2: LightCycler[®] 480 II programming for reaction volume of 30 µl

The following information is based on LightCycler[®] 480 Software (version 1.5).

The *ResistancePlus*[®] GC₍₆₁₀₎ kit contains dyes for the LightCycler[®] 480 Instrument II. The *PlexPCR*[®] Colour Compensation kit (Cat no 90001) must be run and applied for LC480 II analysis (see **Section 21.2**). This kit can be supplied on request.

21.1 Programming the LightCycler[®] 480 Instrument II (LC480 II)

Detection Format

Create a custom **Detection Format**

Open Tools > Detection Formats

Create a New Detection Format, and name 'SpeeDx PlexPCR' (may be created during the generation of SpeeDx Colour Compensation file) (See Figure 10)

For Filter Combination Selection select the following (Excitation-Emission):

	Table 44. Filter Combinations ^A								
LC480 II	440-488	465-510	533-580	533-610	533-640	618-660			

^ These Filter Combinations are the default names for the channels

Set the Selected Filter Combination List for all channels as:

Melt Factor: 1

Quant Factor: 10

Max Integration Time (sec): 1

Filter Combination Selection											
Emission											
E x	48 440 🔽	8 510 58 F F F	610 5	640 6 Г Г	60						
c i t	465 🗌	ם או		ГГ	-						
a t	498 🗌			ГГ	-						
i	533 🗌		ম	। <u>ज</u>	-						
n	618 🗌				~						
						Clear					
r Sel	ected Fi	ilter Comb	ination I	_ist—							
Ex	citation Filter	Emission Filter	Name	Melt Facto	t Quant or Factor	Max Integration Time (Sec)					
	440	488	440-488	1	10	1					
	465	510	465-510	1	10	1					
	533	580	533-580	1	10	1					
	533	610	533-610	1	10	1					
	533	640	533-640	1	10	1					
	618	660	618-660	1	10	1					

Figure 10. Custom SpeeDx Detection Format

Instrument Settings

Create a custom **Detection Format**

Open Tools > Instruments

For Instrument Settings > select Barcode Enabled

Experiment setup

Select New Experiment

In the Run Protocol tab

For **Detection Format** select the custom 'SpeeDx PlexPCR' (Figure 11)

Select Customize >

Select Integration Time Mode > Dynamic

Select the following Active Filter Combinations shown in Table 45

Table 45. Channels for ResistancePlus [®] GC targets								
Target	<i>N. gonorrhoeae gyrA</i> S91 (wild type)	N. gonorrhoeae porA	<i>N. gonorrhoeae gyrA</i> S91F (mutant)	Internal Control	N. gonorrhoeae opa			
LC480 II	465-510	533-580	533-610	533-640	618-660			

		J					
[Detection Fo	ormats					
[Detection	Format SpeeDx PlexPCR					
	Dynamic Manual						
	Active	Filter Combination					
		440-488 (440-488)					
	~	465-510 (465-510)					
	 Image: A start of the start of	533-580 (533-580)					
	~	533-610 (533-610)					
	~	533-640 (533-640)					

 \odot

Figure	11.	Customize	Detection	Format
--------	-----	-----------	-----------	--------

To enable automated sample detection in the analysis software, assign nametags to the wells on the plate.

618-660 (618-660)

~

Open the Sample Editor module

Select well

Edit Sample Name to match nametag defined in Assays module of the analysis software (see Section 29.4)

Samples are labelled as *Prefix_Suffix* (as shown in **Table 46** and **Figure 12**)

NOTE: Sample nametags are case sensitive. The nametag must match exactly to those assigned in the run file.

Table 46. Sample nametags for analysis software									
Sample Type	Prefix_ (in analysis software)	_Suffix (in analysis software)	Sample Name (in LC480)						
Regular sample	Sample	_GC	Sample_GC						
Negative Control	NEG	_GC	NEG_GC						
Positive Control (MT, GC gyrA S91F) (Pa)	Pa	_GC	Pa_GC						
Positive Control (WT, GC gyrA S91) (Pb)	Pb	_GC	Pb_GC						

Figure	12	Sample	Editor -	Assigning	namotans	to	wolle
rigure	12.	Sample	Eullor -	Assigning	nametays	ω	wens

Pos	Filter	Color	Repl Of	Sample Name
	combination			
Al	440-488 (440			Sample 1_GC
Al	465-510 (465			Sample 1_GC
Al	533-580 (533			Sample 1_GC
Al	533-610 (533			Sample 1_GC
Al	533-640 (533			Sample 1_GC
Al	618-660 (618			Sample 1_GC
A 2	440-488 (440			Pa_GC
A 2	465-510 (465			Pa_GC
A 2	533-580 (533			Pa_GC
A 2	533-610 (533			Pa_GC
A2	533-640 (533			Pa_GC
A2	618-660 (618			Pa_GC
A3	440-488 (440			Pb_GC
A3	465-510 (465			Pb_GC
A3	533-580 (533			Pb_GC
A3	533-610 (533			Pb_GC
A3	533-640 (533			Pb_GC
A3	618-660 (618			Pb_GC
A4	440-488 (440			NEG_GC
A4	465-510 (465			NEG_GC
A4	533-580 (533			NEG_GC
Α4	533-610 (533			NEG_GC
A 4	533-640 (533			NEG_GC
A4	618-660 (618			NEG_GC

For a 30 µl reaction

Set Reaction Volume > 30 µl

Create the following Program (shown in more detail in Figure 13 - Figure 16):

Table 47. Thermocycling Program									
Program Name	Cycles	Target °C	Hold	Ramp Rate (°C/s) [≠]					
Polymerase activation	1	95°C	2 min	4.4					
Touch down cycling ⁵ :	10	95°C	5 s	4.4					
Step down -0.5°C/cycle	10	61°C – 56.5°C ^δ	30 s	2.2					
Quantification cycling*:	50	95°C	5 s	4.4					
Acquisition/Detection	50	52°C⁺	40 s	2.2					
Cooling	1	40°C	30 s	2.2					

Default ramp rate (96 well plate)

⁵ Step size: -0.5°C/Cycle, Sec Target: 56°C

+ Analysis mode: Quantification, Acquisition mode: Single

Figure 13. Thermocycling Program (30 µl reaction) – Polymerase activation

Experi-	- Sotu	n	Run F	Protocol		Data		Run Notes			Ş ÌÌ
	Detec	ction Form	at SpeeD	x PlexPCR		Customize	Block Size 96	Plate ID	Reaction Volume 30	3	
Subset Editor	Color	r Comp ID)		Lot No		Test ID				⊮∍
\equiv						Programs					
Sample	\square	Program	n Name					C	ycles Analysis Mode		
	A	Polyme	rase acti	vation				1	None	-	23
	U	Touchd	own cycli	ng				10	* None	•	\equiv
Analysis		Quanti	fication	cycling				50	Quantification	-	
		Cool d	own					1	+ None	-	(77)
											<u> </u>
Report	$\mathbf{\nabla}$										
\equiv					Polyme	rase activation Tempera	ature Targets				l (B)
Sum.		Tar	get (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitions (per °C)	Sec Target (°C) Ste	p Size (°C) Step Delay (cy	cles)	$\overline{\frown}$
	Ð	▶ 95		None	• 00:02:00	4.4	÷	0 0	÷ 0	-	\sim
	\Box										\square
											$ \heartsuit $
	\mathbf{r}										-

Figure 14. Thermocycling Program (30 µl reaction) – Touchdown cycling

Experi-		Run	Protocol	Data				Run Notes				
ment	Detec	p ction Format Speel	Dx PlexPCR		Customize	Block Siz	e 96	Plate ID	R	eaction Volume	30 📫	
Subset Editor	Color	r Comp ID		Lot No			Test ID	J				67
\equiv					Programs							
Sample	\Box	Program Name							Cycles	Analysis M	ode	문
	(A)	Polymerase act	ivation						1	None	•	동물
	$\underline{\bigcirc}$	Touchdown cycl	ing						10	None	-	
Analysis	\square	Quantification	cycling						50	Quantificatio	<u>n</u>	(43)
\Box	\cong	Cool down							1	None		
Report	\square											
\square				Touch	ndown cycling Tempera	ature Targets						
C		Target (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisition	s (per °C)	Sec Target (°C)	Step Size	(°C) Step Delay	(cycles)	
sum.	Ā											Δ
\square		▶ 95	• None •	00:00:05	4.4		÷.) 📫	0	÷ 0	÷	∇
		61	None	00:00:30	2.2		5	6 🕂	0.5	0	÷	
	U											\square
												$ \heartsuit $
	$\mathbf{\bullet}$											\square

Figure 15. Thermocycling Program (30 µl reaction) – Quantification cycling

Experi-			Run F	Protocol		Data		Run Notes				
ment	Det	etup- tecti	ion Format SpeeDa	<pre>x PlexPCR</pre>		Customize Block Size 96				tion Volume 30 🚊		
Subset Editor	Co	lor (Comp ID		Lot No		Test II				∥ତ⇒	
\equiv		ר				Programs						
Sample	\square	Ľ	Program Name						Cycles	Analysis Mode		
Editor	A		Polymerase acti	vation					1 🕂 No	ne 💌	비동물	
	U	0_	Touchdown cycli	ng					10 - No	one 💌		
Analysis	A	2	Quantification	cycling					50 ÷Q1	antification •		
		2	Cool down						1 - No	me 💌		
	$\left \mathbf{\vee} \right $	•]										
Report	Ċ											
\square					Quantif	ication cycling Tempe	rature Targets				비닐	
		۱ŀ	Target (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitions (per °C)	Sec Target (°C)	Step Size (°C	Step Delay (cycles)		
Sum.		5	iuiget (c)	Acquisition mode	1014 (111.1111.33)	nump nute (craj	Acquisitions (per c)	See funger(c)	5100 5120 (0	step being (ejeies)		
\square	l(Ŧ	21	95	None	00:00:05	4.4	÷	0 🗘	0	0		
		5	52	Single	00:00:40	2.2		0	0	÷0 ÷	i 🛀	
) -										
		5									L (V)	

Figure 16. Thermocycling Program (30 µl reaction) – Cooling

Experi-	- Sot	10	Run Protoco	bl		Data		Run Notes				
	Dete	ection Format	SpeeDx Ple	EXPCR		Customize	Block Size 96	Plate ID	Reaction Volu	me 🕄 📑		
Subset Editor	Cold	or Comp ID			Lot No		Test II	D				
Sample	~					Programs						
Editor	0	Program Na Polymerase	me activati	on				1	None None	sis Mode	물	
\equiv	Ð	Touchdown	cycling					1	None	•		
Analysis	Θ	Quantifica Cooling	tion cycl	ing				50) Ouantific	ation •		
H		Cooring						-	. Hone			
Report	Ľ	1										
\square					C	ool down Temperatu	re Targets					
Sum.		Target (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitions (per °C)	Sec Target (°C)	Step Size (°C) Step	Delay (cycles)		
	\odot	• 40	None	:	• 00:00:30	2.2	:	0 -	• • •	÷	\Leftrightarrow	
	Θ											
		í.									\otimes	

> Start Run

When the cycling program has finished, export a ". ixo" file for analysis in the ResistancePlus® GC (LC480) analysis software.

Select Export

Save in an easily identifiable location

21.2 Colour Compensation for LightCycler® 480 Instrument II

NOTE: The PlexPCR[®] Colour Compensation (Cat no 90001) kit must be run and applied for LC480 II analysis. This kit can be supplied on request.

For analysis using the software, the Sample Name of the colour compensation reactions must be labelled as shown in Table 48.

When the cycling program has finished, export a ". ixo" file for analysis in the *ResistancePlus*® GC (LC480) analysis software.

Select Export

Save in an easily identifiable location and name as "SpeeDx PlexPCR"

Table 48. Sample Na	Table 48. Sample Name for colour compensation reactions for the analysis software										
Reactions	BLANK	488 mix	510 mix	580 mix	610 mix	640 mix	660 mix				
Dominant Channel	Water	440-488	465-510	533-580	533-610	533-640	610-660				
Sample Name	BLANK	440-488	465-510	533-580	533-610	533-640	610-660				

21.3 Interpretation of results

Data interpretation requires the *ResistancePlus*[®] GC (LC480) analysis software. The analysis software can be supplied on request, contact <u>tech@speedx.com.au</u> for more information.

Refer to Section 29 for instructions on using the ResistancePlus® GC (LC480) analysis software.

22 Appendix 2: cobas z 480 analyser programming for reaction volume 20 µl

The following information is based on the cobas z 480 analyser Software (LightCycler 480 SW UDF 2.1.0). Contact your Roche representative for support in accessing the UDF software on your cobas z 480 analyser.

The *ResistancePlus*[®] GC₍₆₁₀₎ kit contains dyes for the cobas z 480 analyser. The *PlexPCR*[®] Colour Compensation kit (SpeeDx Cat no 90001 / Roche Cat no 09256695001) must be run and applied for z 480 analysis (see **Section 22.2**). This kit can be supplied on request.

22.1 Programming the cobas z 480 analyser (z 480)

Detection Format

Create a custom **Detection Format**

Open Tools > Detection Formats

Create a New Detection Format, and name 'SpeeDx PlexPCR' (may be created during the generation of SpeeDx Colour Compensation file) (See Figure 17)

For Filter Combination Selection select the following (Excitation-Emission):

		Table 49. Filter Combinations ^A									
z 480	465-510	540-580	540-610	540-645	610-670						

^ These Filter Combinations are the default names for the channels

Set the Selected Filter Combination List for all channels as:

Melt Factor: 1

Quant Factor: 10

Max Integration Time (sec): 1

-Filter Combination Selection-Emission 510 580 610 645 670 🗗 Г Г Г Г F 700 465 🔽 Г 540 🗆 🖓 🖓 🖓 🗆 610 🗌 🗌 🗖 🗖 🔽 0 n 680 🗆 🗆 🗆 🗆 🗖 Clear --- 🔺 Selected Filter Combination List-Excitation Emission Quant Max Integration Melt Name Filter Filter Factor Factor Time (Sec) 465 510 465-510 10 540 580 540-580 1 10 1 540 610 540-610 10 1 1 540 645 540-645 1 10 1

1

10

Figure 17. Custom SpeeDx Detection Format

Instrument Settings

Create a custom **Detection Format**

Open Tools > Instruments

For Instrument Settings > select Barcode Enabled

610

670 610-670

Experiment setup

Select New Experiment

In the Run Protocol tab

For Detection Format select the custom 'SpeeDx PlexPCR' (Figure 18)

Select Customize >

Select Integration Time Mode > Dynamic

Select the following Active Filter Combinations shown in Table 50.

Table 50. Channels for <i>ResistancePlus</i> [®] GC targets										
Target	<i>N. gonorrhoeae gyrA</i> S91 (wild type)	N. gonorrhoeae porA	<i>N. gonorrhoeae gyrA</i> S91F (mutant)	Internal Control	N. gonorrhoeae opa					
z 480	465-510	540-580	540-610	540-645	610-670					

Det	tection Format	2
	etection Forr	mat SpeeDx PlexPCR Fime Mode
(Dynamic	C Manual
	Active	Filter Combination
•	✓	465-510 (465-510)
	✓	540-580 (540-580)
	✓	540-610 (540-610)
	✓	540-645 (540-645)
	✓	610-670 (610-670)

Figure 18. Customize Detection Format

To enable automated sample detection in the analysis software, assign nametags to the wells on the plate

Open the Sample Editor module

Select well

Edit Sample Name to match nametag defined in Assays module of the analysis software (see Section 29.4)

Samples are labelled as *Prefix_Suffix* (as shown in **Table 51** and **Figure 19**)

NOTE: Sample nametags are case sensitive. The nametag must match exactly to those assigned in the run file.

Table 51. Sample nametags for analysis software									
Sample Type	Prefix_ (in analysis software)	_Suffix (in analysis software)	Sample Name (in z 480)						
Regular sample	Sample	_GC	Sample_GC						
Negative Control	NEG	_GC	NEG_GC						
Positive Control (MT, GC gyrA S91F) (Pa)	Ра	_GC	Pa_GC						
Positive Control (WT, GC gyrA S91) (Pb)	Pb	_GC	Pb_GC						

	Pos	Filter combination	Color	Repl Of	Sample Name
۲	A1	465-510 (465			Sample 1_GC
	A1	540-580 (540			Sample 1_GC
	A1	540-610 (540			Sample 1_GC
	A1	540-645 (540			Sample 1_GC
	A1	610-670 (610			Sample 1_GC
	A2	465-510 (465			Pa_GC
	A2	540-580 (540			Pa_GC
	A2	540-610 (540			Pa_GC
	A2	540-645 (540			Pa_GC
	A2	610-670 (610			Pa_GC
	A3	465-510 (465			Pb_GC
	A3	540-580 (540			Pb_GC
	A3	540-610 (540			Pb_GC
	A3	540-645 (540			Pb_GC
	A3	610-670 (610			Pb_GC
	A4	465-510 (465			NEG_GC
	A4	540-580 (540			NEG_GC
	A4	540-610 (540			NEG_GC
	A 4	540-645 (540			NEG_GC
	A4	610-670 (610			NEG_GC

Figure 19. Sample Editor – Assigning nametags to wells

Set Reaction Volume > 20 µl

Create the following Program (shown in more detail in Figure 20 - Figure 23):

Table 52. Thermocyc	Table 52. Thermocycling Program										
Program Name	Cycles	Target °C	Hold	Ramp Rate (°C/s) [≠]							
Polymerase activation	1	95°C	2 min	4.4							
Touch down cycling ⁵ :	10	95°C	5 s	4.4							
Step down -0.5°C/cycle	10	61°C – 56.5°C⁵	30 s	2.2							
Quantification cycling*:	40	95°C	5 s	4.4							
Acquisition/Detection	40	52°C⁺	40 s	2.2							
Cooling	1	40°C	30 s	2.2							

Default ramp rate (96 well plate)

⁸ Step size: -0.5°C/Cycle, Sec Target: 56°C

+ Analysis mode: Quantification, Acquisition mode: Single

Figure 20. Thermocycling Program (20 µl reaction) – Polymerase activation

J LightCycl	er® 480	SW - User Defin	ed Work	flow for cobas z 480									- [×
Instrument:	5473	5 / Not Conne	cted						Databa	ise: June2020 (Research)			Roche
Window:	Nev	v Experiment						-	User:	Speedx				liocite
Experi-			Run P	rotocol		Data Run Notes								<u>5</u>]]
ment	- Setur Detec	tion Format	SpeeD	x PlexPCR			Customize	Block Size	96	Plate ID	Re	eaction Volume 20	-	
Editor	Color	Comp ID			Lot No				Test ID	1				2
\equiv							Programs							
Sample		Program Na	ime								Cycles	Analysis Mod	e	
Editor		Polymeras	e acti	ivation							1 ÷	None	•	88
\equiv	Ð	Touchdown	cycli	ing							10 ÷	None	•	
Analysis		Quantific	ation	cycling							40 2	Quantification	-	
		Cooling									1 🛟	None	•	3
Report	✓													
						Polymer	ase activation Temp	erature Targe	ts					
Sum.		Target	°C)	Acquisition Mode	Hold (hh:	mm:ss)	Ramp Rate (°C/s)	Acquisition	s (per °C)	Sec Target (°C)	Step Size	e (°C) Step Delay (cycles)	
	Ð	95	;	None	• 00:02:00	÷	4.4 ÷		÷	0 +	0	0	÷	
	Θ													
	V													

Instrument: 54735 / Not Connected Databass: June2020 (Research) Window: New Experiment User: Speedx Experiment: Setup- Detection Format SpeeDx Plate ID Reaction Volume Subset Color Comp ID Lot No Test ID Program Name Cycles Program Name Programs Polymerase ativation Touchdown cycling 10 Cooling 1 Outperfunction cycling 10 Cooling 1 Sumn Quantification cycling Simn Sample Sample Outperfunction Cycling Sumn Sample Sample Outperfunction Cycling Sumn Sample Simn Sample Sample Outperfunction Cycling Sumn Sample Sample Outperfunction Cycling Sample Outperfunction Cycling Sumn Sample Sample Outperfunction Cycling Sample Sample Sample Sample <th>LightCyc</th> <th>ler® 480</th> <th>SW - User Defined W</th> <th>/orkflow for cobas z 480</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>×</th>	LightCyc	ler® 480	SW - User Defined W	/orkflow for cobas z 480						-		×
Number Nume Nume Nume Nume Experiment Run Protocol Data Run Notes Setup Detection Format SpeeDx PlexPCR Customize Block Size 96 Plate ID Reaction Volume 201 Plate ID Subset Color Comp ID Lot No Test ID Programs Program Name Program Name Program I SpeeDx Plate ID Plate ID None Plate ID	Instrument	: 5473	5 / Not Connecte	d				Database: June2020	0 (Research)		1	Roche
Run Protocol Data Run Notes Setup- Setup- Customize Block Size 96 Plate ID Reaction Volume 201 Subset Color Comp ID Lot No Test ID Color Comp ID Cycles Analysis Mode Editor Pogram Name Cycles Analysis Mode 10 None 10 <	Window:	New	v Experiment				•	User: Speedx			X	IUCIIC
Setup Detection Format SpeeDx PlexPCR Customize Block Size 96 Plate ID Reaction Volume 201 Sample Program Name Cycles Analysis Mode Program Name Cycles Analysis Mode Program Name Cycles Analysis Mode Polymerase activation 1 ***********************************	Experi-		Ru	n Protocol		Data			Run Notes			<u>5</u>])
Subject Color Comp ID Lot No Test ID Program Name Program Name Cycles Analysis Mode Dilynerase activation 1 1 Volse Analysis Mode Color Comp ID Orgrams Program Name Cycles Analysis Mode Dilynerase activation 1 Volse Analysis Mode Analysis O Cycles Analysis Mode Quantification cycling 10 Cycles Analysis Mode Report Cycles Analysis Mode W Cuantification cycling Temperature Targets Sum. Target (°C) Acquisition Mode Hold (hh:mm:ss) Ramp Rate (°C/s) Acquisitions (per °C) Sec Target (°C) Step Delay (cycles) Sum. S Single 0 0 2	ment	Detect	tion Format Spe	eDx PlexPCR		Customize	Block Size 96	Plate ID	Re	action Volume 🛛 🔁		
Programs Program Name Polymerase activation 1 None Touchdown cycling 1 None None Quantification cycling 0 Quantification None None Cooling Quantification Quantification None None None None Report Cooling Quantification cycling Temperature Targets None	Subset Editor	Color	Comp ID		Lot No			Test ID				╞═
Sample Program Name Cycles Analysis Mode Polymetrase activation 1 1 10 <td>\square</td> <td></td> <td></td> <td></td> <td></td> <td>Programs</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	\square					Programs						
Collaboration 1 1 100e 1 Polymerase activation 10 100e 100e 100e Collag 10 100e 100e 100e 100e Collag 10 100e 100e 100e 100e 100e Report V 1 None 1 None 100e 100e Sum. Target (°C) Acquisition Mode Hold (hh:mm:ss) Ramp Rate (°C/s) Acquisitions (per °C) Sec Target (°C) Step Delay (cycles) Sum. 52 1 None 0 0 0 1 V	Sample	\bigcirc	Program Name						Cycles	Analysis Mode		
Analysis 10 Wone • Quantification cycling • Quantification cycling • Quantification cycling • Quantification •	Editor	Ð	Polymerase a	ctivation					1 .	None	- I I	53
Quantification cycling Quantification Colling Quantification Report Quantification cycling Temperature Targets Sum. Quantification Mode Hold (hh:mm:ss) Ramp Rate (°C/s) Acquisitions (per °C) Sec Target (°C) Step Delay (cycles) 95 2 8 00:00:05 2 4.4 2 0 0 2 Sum. 95 2 8 00:00:05 2 4.4 2 0 0 2 2		<u>e</u>	Touchdown cy	cling					10 -	None	-12	
Cooling I wone Quantification cycling Temperature Targets Sum. Target (°C) Acquisition Mode Hold (hh:mm:ss) Ramp Rate (°C/s) Acquisitions (per °C) Sum. 95 1/2 Sum. 95 1/2 Sum. 0 0 0 Sum. 0 0 0 Sum. 95 1/2 1/2 0 0 0 Sum. 0 1/2 0 1/2 0 0 1/2	Analysis	$[\Theta]$	Quantificati	on cycling					40	Quantification	- 1	(A3)
Cuantification cycling Temperature Targets Sum. Image: Simple Output: Simple Image: Simple 00:00:05 Image: Simple 00:00:05 Image: Simple 00:00:04 Image: Simple 00:00:04 Image: Simple 00:00:04 Image: Simple 00:00:04		\cong	Cooling						1 .	None	40	Ś
Target (°C) Acquisition Mode Hold (hh:m::ss) Ramp Rate (°C/s) Sec Target (°C) Step Delay (cycles) Sum. Image: Single 00:00:05 14.4 1 0 10 1 1 Solution Single 00:00:05 14.4 1 0 10 1 <th1< th=""> 1<!--</td--><td>Bonort</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	Bonort											
Quantification cycling Temperature Targets Sum. Target (°C) Acquisition Mode Hold (hh:mm:ss) Ramp Rate (°C/s) Acquisitions (per °C) Sec Target (°C) Step Delay (cycles) 95 1 None 00:00:05 1 1.4 1 0 10 1 <td< td=""><td>кероп</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	кероп											
Sum. Target (°C) Acquisition Mode Hold (hh:mm:ss) Ramp Rate (°C/s) Acquisitions (per °C) Sec Target (°C) Step Delay (cycles) 95 1 None 00:00:05 1 1 0 0 0 0 1 52 1 5ingle 00:00:40 2.2 0 0 1 0 1	\equiv				Quantif	ication cycling Tempe	erature Targets					Ē
Image: Stringle Mone 00:00:05 4.4	Sum.	\subseteq	Target (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitions (p	er °C) Sec Target (°	C) Step Size	(°C) Step Delay (cycles	s) ~	~
S2 Single 00:00:40 \$2.2 \$ 0 \$ 0 \$ 0 \$ 0		$(\mathbf{\Phi})$	95	None	▼ 00:00:05	4.4		1 0	1 0	1 0		€>
		S	52	Single	00:00:40	2.2		0		÷ 0	킠년	<u> </u>
		Θ							-		16	3
		$\overline{\mathbf{V}}$										\otimes

Figure 23. Thermocycling Program (20 µl reaction) – Cooling

J LightCyc	ler® 480	SW - User Defi	ined Workflo	w for cobas z 480							-		×
Instrument	: 5473	5 / Not Conn	nected					Databa	se: June2020 (Research)			Bache
Window:	Nev	v Experimen	ıt				-	User:	Speedx				
Experi-			Run Pro	tocol		Data			Run N	otes			51
ment	Detect	tion Format	SpeeDx	PlexPCR		Customize	Block Size	96	Plate ID	Re	eaction Volume 20	Ð	
Subset Editor	Color	Comp ID			Lot No			Test ID					67
						Programs						-	
Sample	\frown	Program N	lame							Cycles	Analysis Mode		
Editor	Ð	Polymera	se activ	ation						1 🕂	None	•	83
		Touchdow	n cyclin	g						10	None	-	
Analysis	Θ	Cooling	cation c	YCIING						1	None	-	(↔)
\square											1		
Report	$\mathbf{\nabla}$												
						Cooling Temperature	Tarnote						
		Target	t (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitions	s (per °C)	Sec Target (°C)	Step Size	e (°C) Step Delay (cvc	les)	
Sum.	A	5							5 ,				Δ
		40	÷1	lone	• 00:00:30	2.2		÷	•	0	÷0	-	
	Θ												$\overline{\frown}$
	Z												(\mathbf{X})
	$\mathbf{\nabla}$												

> Start Run

When the cycling program has finished, export a ". ixo" file for analysis in the ResistancePlus® GC (z480) analysis software.

Select Export

Save in an easily identifiable location

22.2 Colour Compensation for cobas z 480 analyser

NOTE: The *PlexPCR*[®] Colour Compensation (SpeeDx Cat no 90001 / Roche Cat no 09256695001) kit must be run and applied for z480 analysis. This kit can be supplied on request.

For analysis using the software, the Sample Name of the colour compensation reactions must be labelled as shown in **Table 53**.

When the cycling program has finished, export a ". ixo" file for analysis in the *ResistancePlus*® GC (z480) analysis software.

Select Export

Save in an easily identifiable location and name as "SpeeDx PlexPCR"

Table 53. Sample Na	able 53. Sample Name for colour compensation reactions for the analysis software					
Reactions	BLANK	510 mix	580 mix	610 mix	640 mix	660 mix
Dominant Channel	Water	465-510	540-580	540-610	540-645	610-670
Sample Name	BLANK	465-510	540-580	540-610	540-645	610-670

22.3 Interpretation of results

Data interpretation requires the *ResistancePlus*[®] GC (z480) analysis software. The analysis software can be supplied on request, contact your Roche representative for more information.

Refer to Section 29 for instructions on using the ResistancePlus® GC (z480) analysis software.

23 Appendix 3: Applied Biosystems® 7500 Fast programming for reaction volume 20 µl

The following information is based on 7500 Software v2.3.

The *ResistancePlus*[®] GC₍₅₅₀₎ kit contains dyes for the Applied Biosystems[®] (ABI) 7500 Fast. Default dye calibrations are used for all channels. Custom calibration is not required.

23.1 Programming the Applied Biosystems[®] 7500 Fast

Select Advanced Setup

In Setup > open Experiment Properties and select the following

Name the experiment

Instrument > 7500 Fast (96 Wells)

Type of experiment > Quantitation – Standard Curve

Reagents > Other

Ramp Speed > Standard

In Setup > open Plate Setup

In Define Targets and Samples tab >

Define Targets as shown below (define colours as required)

Table 54. Define Targets				
Target Name	Reporter	Quencher		
gyrA-S91	FAM	None		
porA	JOE	None		
IC	TAMRA	None		
gyrA-S91F	Texas Red	None		
ора	Cy5	None		

To enable automated sample detection in the analysis software, assign nametags to the wells on the plate

In Setup > open Plate Setup

In Define Targets and Samples tab >

Define Samples Add or edit Sample Name to match nametags defined in Assays module of the analysis software (Section 29.4)

Samples are labelled as *Prefix* Suffix (as shown in **Table 55** and **Figure 24**)

NOTE: Sample nametags are case sensitive. The nametag must match exactly to those assigned in the run file.

Table 55. Sample nametags for analysis s	oftware		
Sample Type	Prefix_ (in analysis software)	_Suffix (in analysis software)	Sample Name (in LC480)
Regular sample	Sample	_GC	Sample_GC
Negative Control	NEG	_GC	NEG_GC
Positive Control (MT, GC gyrA S91F) (Pa)	Pa	_GC	Pa_GC
Positive Control (WT, GC gyrA S91) (Pb)	Pb	_GC	Pb_GC

Figure 24. Sample Editor – assigning nametags to wells

Define Samples	
Add New Sample Add Saved Sample Save Sample Delete Sample	
Sample Name	Color
Sample 1_GC	×
NEG_GC	~
Pa_GC	~
Pb_GC	

In Assign Targets and Samples tab >

Select wells and assign targets and samples to the selected wells

Select **Passive reference** > None

In Setup > open Run Method

For a 20 µl reaction;

Set Reaction Volume Per Well > 20 µl

Create the following Program (shown in more detail in Graphical View (**Table 56** and **Figure 25** and **Figure 26**) and Tabular View (**Figure 27**):

Table 56. Thermocycling Program				
Program Name	Cycles	Target °C	Hold	Ramp [*]
Polymerase activation	1	95°C	2 min	100%
Touch down cycling:	10	95°C	5 s	100%
Step down -0.5°C/cycle⁵	10	61°C – 56.5°C ^δ	30 s	100%
Quantification cycling*:	40	95°C	5 s	100%
Acquisition/Detection	40	52°C+	40 s	100%

Default ramp rate

^δ Enable AutoDelta: -0.5°C/cycle

+ Collect data on hold

	Holding Stage	Cycling) Stage	Cycling	Stage
		Number of Cyr I Enable Starting Cyc	cles: 10 🚔 AutoDelta de: 2 🗢	Number of Cyc Enable Starting Cyc	cles 40 🛃 AutoDelta le: 2 🕏
Ramp Rate (%):	100.0	100.0	100.0	100.0	100.0
Temperature (*C):	95.0	95.0	61.0	95.0	52.0
Time:	02:00	00:05	00:30	00:05	00:40
AutoDelta Temp:		* • 0.00	- • 0.50		
AutoDelta Time:		+ +	+ • 00:00		
Collect Data on Ramp:		шÌ.	m)	mi	шĂ.
Collect Data on Hold:	m.	mì	mĨ	m.	
	Step 1	Step 1	Step 2	Step 1	Step 2

In Setup > open Run Method

Select Start Run

23.2 Interpretation of results

Data interpretation requires the *ResistancePlus*[®] GC (7500) analysis software. The analysis software can be supplied on request, contact <u>tech@speedx.com.au</u> for more information.

Refer to Section 29 for instructions on using the $\textit{ResistancePlus}^{\circledast}\,\text{GC}$ (7500) analysis software.

24 Appendix 4: Applied Biosystems[®] 7500 Fast programming for reaction volume 30 µl

The following information is based on 7500 Software v2.3.

The *ResistancePlus*[®] GC₍₅₅₀₎ kit contains dyes for the Applied Biosystems[®] (ABI) 7500 Fast. Default dye calibrations are used for all channels. Custom calibration is not required.

24.1 Programming the Applied Biosystems[®] 7500 Fast

Select Advanced Setup

In Setup > open Experiment Properties and select the following

Name the experiment

Instrument > 7500 Fast (96 Wells)

Type of experiment > Quantitation – Standard Curve

Reagents > Other

Ramp Speed > Standard

In Setup > open Plate Setup

In Define Targets and Samples tab >

Define Targets as shown below (define colours as required)

Table 57. Define Targets				
Target Name	Reporter	Quencher		
gyrA-S91	FAM	None		
porA	JOE	None		
IC	TAMRA	None		
gyrA-S91F	Texas Red	None		
ора	Cy5	None		

To enable automated sample detection in the analysis software, assign nametags to the wells on the plate

In Setup > open Plate Setup

In Define Targets and Samples tab >

Define Samples

Add or edit Sample Name to match nametags defined in Assays module of the analysis software (Section 29.4)

Samples are labelled as *Prefix_Suffix* (as shown in **Table 58** and **Figure 28**)

NOTE: Sample nametags are case sensitive. The nametag must match exactly to those assigned in the run file.

Table 58. Sample nametags for analysis s	oftware		
Sample Type	Prefix_ (in analysis software)	_Suffix (in analysis software)	Sample Name (in 7500 Fast)
Regular sample	Sample	_GC	Sample_GC
Negative Control	NEG	_GC	NEG_GC
Positive Control (MT, GC gyrA S91F) (Pa)	Pa	_GC	Pa_GC
Positive Control (WT, GC gyrA S91) (Pb)	Pb	_GC	Pb_GC

Figure 28. Sample Editor – assigning nametags to wells

Define Samples	
Add New Sample Add Saved Sample Save Sample Delete Sample	
Sample Name	Color
Sample 1_GC	·
NEG_GC	·
Pa_GC	·
Pb_GC	

In Assign Targets and Samples tab >

Select wells and assign targets and samples to the selected wells

Select **Passive reference** > None

In Setup > open Run Method

For a 30 µl reaction;

Set Reaction Volume Per Well > 30 µl

Create the following Program (shown in more detail in Graphical View (Table 59 and Figure 29 and

Figure 30) and Tabular View (Figure 31):

Table 59. Thermocycling Pre	ogram			
Program Name	Cycles	Target °C	Hold	Ramp≠
Polymerase activation	1	95°C	2 min	100%
Touch down cycling:	10	95°C	5 s	100%
Step down -0.5°C/cycle⁵	10	61°C – 56.5°C ^δ	30 s	100%
Quantification cycling*:	50	95°C	5 s	100%
Acquisition/Detection	50	52°C+	40 s	100%

Default ramp rate

⁶ Enable AutoDelta: -0.5°C/cycle

+ Collect data on hold

Figure 29. Run method (30 µl reaction) – Graphical View

Figure 30. Run method (30 µl reaction) – Graphical View – Enable AutoDelta

Figure 31. Run method (30 µl reaction) – Tabular View

In Setup > open Run Method

Select Start Run

24.2 Interpretation of results

Data interpretation requires the *ResistancePlus*[®] GC (7500) analysis software. The analysis software can be supplied on request, contact tech@speedx.com.au for more information.

Refer to Section 29 for instructions on using the *ResistancePlus®* GC (7500) analysis software.

25 Appendix 5: Applied Biosystems[®] 7500 Fast Dx programming for reaction volume 20 μl

The following information is based on SDS Software v1.4.1 for the 7500 Fast Dx.

The *ResistancePlus*[®] GC₍₅₅₀₎ kit contains dyes for the Applied Biosystems[®] (ABI) 7500 Fast Dx. Default dye calibrations are used for all channels. Custom calibration is not required.

25.1 Programming the Applied Biosystems® 7500 Fast Dx (using run file template)

Select Create New Document

In New Document Wizard select the following (Figure 32):

Assay > Standard Curve (Absolute Quantification)

Container > 96-Well Clear

Template > Blank document

Run mode > Standard 7500

Operator > Enter Operator's name

Comments > Enter any comments or additional notes for the run file

Plate Name > Assign a unique name to the run file

Select Next

Figure 32. New Document Wizard window

	Quantitation)	-		
6-Well Clear		-		
ank Document		➡ Browse.		
andard 7500		_		
DS v1.4.1				^
				\sim
	-Well Clear ank Document andard 7500 DS v1.4.1	-Well Clear ank Document andard 7500 DS v1.4.1	Well Clear ank Document Browse. andard 7500 S v1.4.1	Well Clear ank Document andard 7500 SV 1.4.1

In Select Detectors > select New Detector

Define detectors as shown below (define colours as required) (Table 60 and Figure 33)

Table 60. Define De	Table 60. Define Detectors						
Detectors	Detector Name	Reporter Dye	Quencher				
Detector 1	gyrA-S91	FAM	None				
Detector 2	porA	JOE	None				
Detector 3	IC	TAMRA	None				
Detector 4	gyrA-S91F	Texas Red	None				
Detector 5	ора	Cy5	None				

Select OK

Figure 33. New Detector window

New Detector			×
Name:	I		
Description:			
Reporter Dye:	FAM		-
Quencher Dye:	(none)		-
Color:			
Notes:			
Create Ar	other	ОК	Cancel

Select Detectors (Figure 34)

Select detectors and Add to Document

Select Passive reference > None

Figure 34. Select Detectors window

New Document Wiza Select Detectors Select the detectors	ard you will be using	in the docum	ent.				
Find:			•	Pas	sive Reference	: (none)	•
Detector Name gyrA-S91 gyrA-S91F IC opa porA	Description	Reporter FAM TEXAS RED TAMRA CYS JOE	Quencher (none) (none) (none) (none) (none)	Add >>	Detectors in gyrA-S91 gyrA-S91F opa porA IC	Document	
			<1	3ack Next	> F	ïnish	Cancel

In Set Up sample plate >

Select wells and assign 4 detectors to the selected wells

- gyrA-S91
- gyrA-S91F
- opa
- porA
- IC

Note: Only 4 detectors can be added to a well within the 7500 Fast System SDS Software; all detectors added to the programme are reported when analysed in the analysis software (see Section 29)

Select Next

To enable automated sample detection in the analysis software, assign nametags to the wells on the plate

In Setup > Plate tab

Right click on well and select Well Inspector > Enter Sample Name

Edit **Sample Name** to match nametags defined in Assays module of the analysis software (**Section 29.4**) Samples are labelled as *Prefix_Suffix* (as shown in **Table 61** and **Figure 35**)

NOTE: Sample nametags are case sensitive. The nametag must match exactly to those assigned in the run file.

Table 61. Sample nametags for analysis soft	Table 61. Sample nametags for analysis software							
Sample Type	Prefix_ (in analysis software)	Suffix_ (in analysis software)	Sample Name (in 7500 Fast Dx)					
Regular sample	Sample	_GC	Sample_GC					
Negative Control	NEG	_GC	NEG_GC					
Positive Control (MT, GC gyrA S91F) (Pa)	Ра	_GC	Pa_GC					
Positive Control (WT, GC gyrA S91) (Pb)	Pb	_GC	Pb_GC					

/s	Setup 🛽 Instru	Setup (Instrument) Results) Audit Trail) E-Signatures \								
/P	Plate \		-							
	1	2	3	4	5					
A										
в		NEG_GC								
С		Pa_GC								
D		Pb_GC								
E		Sample 1_GC								
F										
G										
Н										
Re	ady									

Figure 35. Setup plate view – Assigning nametags to wells

Select Next

In **Instrument** tab

In Settings box

For a 20 µl reaction, set **Sample Volume (µl)**: Enter 20 µl

Create the following Thermal Cycler Protocol (Table 62 and Figure 36 and Figure 37)

Table 62. Thermal Cycler Protocol							
Program Name	Cycles	Target °C	Hold	Ramp [≠]			
Polymerase activation	1	95°C	2 min	100%			
Touch down cycling:	10	95°C	5 s	100%			
Step down -0.5°C/cycle⁵	10	61°C – 56.5°C⁵	30 s	100%			
Quantification qualingt Acquisition/Detection	40	95°C	5 s	100%			
	40	52°C⁺	40 s	100%			

Default ramp rate

^δ Enable AutoDelta: -0.5°C/cycle

+ Collect data on hold

itage 1 Stage	2	Stage 3	
leps: 1 Reps:	10	Reps: 40	
2:00	95.0 0:05 	95.0	
/	0:30	0:40	
Add Cycle Add	Hold Add Step	Add Dissociation Stage Delet	e Help
Add Cycle Add Settings Sample Volume (µl	Hold Add Step	Add Dissociation Stage	e Help
Add Cycle Add Settings Sample Volume (µl Run Mode	Hold Add Step	Add Dissociation Stage Delet	e Help

Figure 36. Thermal Cycler Protocol (20 µl reaction) – Thermal Profile

Figure 37. Thermal Cycler Protocol (20 μl reaction) – Auto Increment

1 and	Stane 2	nt Hamp Hate	Stane 3		
eps: 1	Reps: 10]	Reps: 40		
	0.0	-0.5	0.0]	
Add Cycle	Add Hold	Add Step	Add Dissociation Stage	Delete	Help
Add Cycle Settings Sample Vo	Add Hold	Add Step	Add Dissociation Stage	Delete	Help
Add Cycle Settings Sample Vo Run Mode	Add Hold	Add Step	Add Dissociation Stage	Delete	Help

25.2 Interpretation of results

Data interpretation requires the *ResistancePlus*[®] GC (7500) analysis software. The analysis software can be supplied on request, contact <u>tech@speedx.com.au</u> for more information.

Refer to Section 29 for instructions on using the ResistancePlus® GC (7500) analysis software.

26 Appendix 6: Applied Biosystems[®] 7500 Fast Dx programming for reaction volume 30 µl

The following information is based on SDS Software v1.4.1 for the 7500 Fast Dx.

The *ResistancePlus*[®] GC₍₅₅₀₎ kit contains dyes for the Applied Biosystems[®] (ABI) 7500 Fast Dx. Default dye calibrations are used for all channels. Custom calibration is not required.

26.1 Programming the Applied Biosystems® 7500 Fast Dx (using run file template)

Select Create New Document

In New Document Wizard select the following (Figure 38):

Assay > Standard Curve (Absolute Quantification)

Container > 96-Well Clear

Template > Blank document

Run mode > Standard 7500

Operator > Enter Operator's name

Comments > Enter any comments or additional notes for the run file

Plate Name > Assign a unique name to the run file

Select Next

Figure 38. New Document Wizard window

Assay:	Standard Curve (Absolute Quantitation)	-	
Container:	96-Well Clear	-	
Template:	Blank Document	▼ Brows	e
Run Mode:	Standard 7500		
Operator:			
Comments:	SDS v1.4.1		~
	1		

In Select Detectors > select New Detector

Define detectors as shown below (define colours as required) (Table 63 and Figure 39)

Table 63. Define Define	Table 63. Define Detectors						
Detectors	Detector Name	Reporter Dye	Quencher				
Detector 1	gyrA-S91	FAM	None				
Detector 2	porA	JOE	None				
Detector 3	IC	TAMRA	None				
Detector 4	gyrA-S91F	Texas Red	None				
Detector 5	ора	Cy5	None				

Select OK

Figure 39. New Detector window

New Detector					×
Name:					
Description:					
Reporter Dye:	FAM			•	
Quencher Dye:	(none)			•	
Color:					
Notes:					
Create Ar	other	0	К	Cancel	

Select Detectors (Figure 40)

Select detectors and **Add** to Document

Select Passive reference > None

Figure 40. Select Detectors window

ind:			•	Pas	sive Reference	(none)	•
Detector Name gyrA-S91 gyrA-S91F C Oppa oorA	Description	Reporter FAM TEXAS RED TAMRA CYS JOE	Quencher (none) (none) (none) (none)	Add >> << Remove	Detectors in D gyrA-S91 gyrA-S91F opa porA IC)ocument	
New Detector			Þ		<u> </u>		

In Set Up sample plate >

Select wells and assign 4 detectors to the selected wells

- gyrA-S91
- gyrA-S91F
- opa
- porA
- IC

Note: Only 4 detectors can be added to a well within the 7500 Fast System SDS Software; all detectors added to the programme are reported when analysed in the analysis software (see Section 29)

Select Next

In Setup > Plate tab

Right click on well and select Well Inspector > Enter Sample Name

Edit Sample Name to match nametags defined in Assays module of the analysis software (Section 29.4)

Samples are labelled as Prefix_Suffix (Table 64 and Figure 41)

NOTE: Sample nametags are case sensitive. The nametag must match exactly to those assigned in the run file.

Table 64. Sample nametags for analysis software						
Sample Type	Prefix_ (in analysis software)	Suffix_ (in analysis software)	Sample Name (in 7500 Fast Dx)			
Regular sample	Sample	_GC	Sample_GC			
Negative Control	NEG	_GC	NEG_GC			
Positive Control (MT, GC gyrA S91F) (Pa)	Ра	_GC	Pa_GC			
Positive Control (WT, GC gyrA S91) (Pb)	Pb	_GC	Pb_GC			

/s	etup (Instru	ment) Result	s / Audit Trail	/ E-Signatur	es \
/P	Plate \				
	1	2	3	4	5
A					
в		NEG_GC			
С		Pa_GC			
D		Pb_GC			
E		Sample 1_GC			
F					
G					
H					
Re	ady				

Figure 41. Setup plate view – Assigning nametags to wells

Select Next

In Instrument tab

In Settings box

For a 30 µl reaction, set Sample Volume (µl): Enter 30 µl

Create the following Thermal Cycler Protocol (Table 65 and Figure 42 and Figure 43)

Table 65. Thermal Cycler Protocol						
Program Name	Cycles	Target °C	Hold	Ramp≠		
Polymerase activation	1	95°C	2 min	100%		
Touch down cycling:	95°C 5 s		5 s	100%		
Step down -0.5°C/cycle⁵	10	61°C – 56.5°C ^δ	30 s	100%		
Quantification cycling*:	50	95°C	5 s	100%		
Acquisition/Detection	50	52°C+	40 s	100%		

≠ Default ramp rate

⁶ Enable AutoDelta: -0.5°C/cycle

+ Collect data on hold

Thermal Cycler Protocol	
Thermal Profile Auto Increment Ramp Rate	
Stage 1 Stage 2	Stage 3
Reps: 1 Reps: 10	Reps: 50
95.0 95.0 2:00 0.06 61.0 0:30	65.0 0.05 62.0 0.40
Add Cycle Add Hold Add Step	Add Dissociation Stage Delete Help
Settings	
Sample Volume (µL) : 30	
Run Mode Standard 7500	Y
Data Collection : Stage 3, Step 2 (52	2.0 @ 0:40)

Figure 42. Thermal Cycler Protocol (30 µl reaction) – Thermal Profile

Figure 43. Thermal Cycler Protocol (30 µl reaction) – Auto Increment

Thermal Profile	Auto Incremen	nt Ramp Rate			
Stage 1	Stage 2	7	Stage 3		
Kebs 1	Neps. 10]	Neps. 00		
,	0.0	Ţ	0.0		
	0:00	1/			
		-0.5			
/		0:00		4	
/			0:00	1	
/					
ſ					
Add Cycle	Add Hold	Add Step	Add Dissociation Stage	Delete	Help
Settings					
Sample Vo	lume ful 1 - 🛛 🗍	0			
Sumple vo	ianio (piz) .				
Run Mode	S	tandard 7500	<u>v</u>		
Data Coller	tion : S	tage 3, Step 2 (5	2.0 @ 0:40) 🔻		

26.2 Interpretation of results

Data interpretation requires the *ResistancePlus*[®] GC (7500) analysis software. The analysis software can be supplied on request, contact tech@speedx.com.au for more information.

Refer to Section 29 for instructions on using the ResistancePlus® GC (7500) analysis software.

27 Appendix 8: Bio-Rad CFX96[™] IVD & Touch programming for reaction volume of 20 µl

The following information is based on Bio-Rad CFX Manager v3.1

The *ResistancePlus*[®] GC₍₆₇₅₎ kit contains dyes for the CFX96 Real-Time PCR System. Default dye calibrations are used for all channels. Custom calibration is not required.

27.1 Programming the CFX96™ IVD or Touch Real-time PCR System

Select View > Open Run Setup

In Run Setup > Protocol tab > Select Create New

In the Protocol Editor (see Figure 44)

Set Sample Volume > 20 µl

Create the following thermocycling program and save as 'SpeeDx PCR'. This protocol can be selected for future runs.

For Touch down cycling, select Step 3 and select **Step options** > Increment: -0.5°C/cycle (shown in more detail in **Figure** 45).

Table 66. Thermocycling Program					
Program Name	Cycles	Target °C	Hold		
Polymerase activation	1	95°C	2 min		
Touch down cycling ⁵ : Step down -0.5°C/cycle	10	95°C	5 s		
	10	61°C – 56.5°C ^δ	30 s		
Quantification cycling ⁺ :	40	95°C	5 s		
Acquisition/Detection	40	52°C ⁺	40 s		

⁵ Step options > Increment: -0.5°C/cycle

+ Add Plate Read to Step

Figure 44. Thermocycling Protocol – Graphical view

Figure 45. Step Options

Step Options			×
Step 3	Plate Read	A	Gradient
Temperature	61.0 °C	В	
Gradient	°C	С	
Increment	-0.5 °C/c	yde D	
Ramp Rate	°C/s	ec E	
Time	0:30 sec/	cycle F	
Extend	sec/	cycle ^G	
	Beep	Н	
		ОК	Cancel

In Run Setup > Plate tab

Select Create New

Select Settings > Plate Type > Select BR Clear

Set Scan mode > All channels

Select Fluorophores > FAM, HEX, Texas Red, Quasar 705, Cy 5 (see Table 67)

Select wells containing samples and assign **Sample Type** and check **Load** for fluorophores (FAM, HEX, Quasar 705, Texas Red, Cy5.)

Save plate

Table 67. Channels for <i>ResistancePlus[®]</i> GC ₍₆₇₅₎ targets						
<i>N. gonorrhoeae</i> <i>gyrA</i> S91 (wild type)	N. gonorrhoeae porA	<i>N. gonorrhoeae</i> gyrA S91F (mutant)	Internal Control	N. gonorrhoeae opa		
FAM	HEX	Texas Red	Quasar 705	Cy5		

In Run Setup > Start Run tab

Select Block

Start Run

To enable automated sample detection in the analysis software, assign nametags to the wells on the plate

Open the Plate Setup module

Select well

Edit **Sample Name** to match nametag defined in Assays module of the analysis software (**Section 29.4**) Samples are labelled as *Prefix_Suffix* (as shown in **Table 68** and **Figure 46**)

NOTE: Sample nametags are case sensitive. The nametag must match exactly to those assigned in the run file.

Table 68. Sample nametags for analysis software						
Sample Type	Prefix_ (in analysis software)	_Suffix (in analysis software)	Sample Name (in CFX96)			
Regular sample	Sample	_GC	Sample_GC			
Negative Control	NEG	_GC	NEG_GC			
Positive Control (GC gyrA S91F mutant) (Pa)	Pa	_GC	Pa_GC			
Positive Control (GC gyrA S91 wild type) (Pb)	Pb	_GC	Pb_GC			

27.2 Interpretation of results

Data interpretation requires the *ResistancePlus*[®] GC (CFX) analysis software. The analysis software can be supplied on request, contact <u>tech@speedx.com.au</u> for more information.

Refer to Section 29 for instructions for using the ResistancePlus® GC (CFX) analysis software.

28 Appendix 7: Bio-Rad CFX96[™] IVD & Touch programming for reaction volume of 30 µl

The following information is based on Bio-Rad CFX Manager v3.1

The *ResistancePlus*[®] GC₍₆₇₅₎ kit contains dyes for the CFX96 Real-Time PCR System. Default dye calibrations are used for all channels. Custom calibration is not required.

28.1 Programming the CFX96™ IVD or Touch Real-time PCR System

Select View > Open Run Setup

- In Run Setup > Protocol tab > Select Create New
 - In the Protocol Editor (see Figure 47):

Set Sample Volume > 30 µl

Create the following thermocycling program and save as 'SpeeDx PCR'. This protocol can be selected for future runs.

For Touch down cycling, select Step 3 and select **Step options** > Increment: -0.5° C/cycle (shown in more detail in **Figure 48**).

Table 69. Thermocycling Program					
Program Name	Cycles	Target °C	Hold		
Polymerase activation	1	95°C	2 min		
Touch down cycling ⁵ :	10	95°C	5 s		
Step down -0.5°C/cycle		61°C – 56.5°C <mark>δ</mark>	30 s		
Quantification cycling ⁺ :	50	95°C	5 s		
Acquisition/Detection	50	52°C⁺	40 s		

⁵ Step options > Increment: -0.5°C/cycle

+ Add Plate Read to Step

Figure 47. Thermocycling Protocol – Graphical view

Figure 48. Step Options

Step Options				×
Step 3		ead	(Gradient
Temperature	61.0	°C	B	
Gradient		°C	C	
Increment	-0.5	°C/cyde	D	
Ramp Rate		°C/sec	E	
Time	0:30	sec/cycle	F	_
Extend		sec/cycle	G н	_
	Beep			
			ОК	Cancel

In Run Setup > Plate tab

Select Create New

Select Settings > Plate Type > Select BR Clear

Set **Scan mode** > All channels

Select Fluorophores > FAM, HEX, Quasar 705, Texas Red, Cy5 (see Table 70)

Select wells containing samples and assign **Sample Type** and check **Load** for fluorophores (FAM, HEX, Quasar 705, Texas Red and Cy5)

Save plate

Table 70. Channels for				
<i>N. gonorrhoeae</i> gyrA S91 (wild type)	N. gonorrhoeae porA	<i>N. gonorrhoeae gyrA</i> S91F (mutant)	Internal Control	N. gonorrhoeae opa
FAM	HEX	Texas Red	Quasar 705	Cy5

In Run Setup > Start Run tab

Select Block

Start Run

To enable automated sample detection in the analysis software, assign nametags to the wells on the plate

Open the Plate Setup module

Select well

Edit Sample Name to match nametag defined in Assays module of the analysis software (Section 29.4)

Samples are labelled as Prefix_Suffix (as shown in Table 71 and Figure 49)

NOTE: Sample nametags are case sensitive. The nametag must match exactly to those assigned in the run file.

Table 71. Sample nametags for analysis software					
Sample Type	Prefix_ (in analysis software)	_Suffix (in analysis software)	Sample Name (in CFX96)		
Regular sample	Sample	_GC	Sample_GC		
Negative Control	NEG	_GC	NEG_GC		
Positive Control (GC gyrA S91F mutant) (Pa)	Pa	_GC	Pa_GC		
Positive Control (GC gyrA S91 wild type) (Pb)	Pb	_GC	Pb_GC		

Figure 49. Sample Editor – Assigning nametags to wells

28.2 Interpretation of results

Data interpretation requires the *ResistancePlus*[®] GC (CFX) analysis software. The analysis software can be supplied on request, contact <u>tech@speedx.com.au</u> for more information.

Refer to **Section 29** for instructions for using the *ResistancePlus*[®] GC (CFX) analysis software.

29 Appendix A: Result interpretation

Data interpretation requires the *ResistancePlus*[®] GC analysis software. See **Table 72** for the appropriate analysis software for each real-time PCR instrument. The analysis software can be supplied on request. Please contact <u>tech@speedx.com.au</u> for more information.

Table 72. <i>ResistancePlus[®]</i> GC analysis software				
Cat no	Analysis software*	Real-time PCR instrument		
99010	Resistance Plus [®] GC (LC480)	LC480 II		
99019	ResistancePlus [®] GC (z480)	z 480		
99009	Resistance Plus [®] GC (7500)	7500 Fast and 7500 Fast Dx		
99015	ResistancePlus® GC (CFX)	CFX96 IVD and CFX96 Touch		

* Refer to the website <u>https://plexpcr.com/resistanceplus-gc/resources/</u> to ensure you are using the most current version of analysis software

NOTE: Follow standard laboratory practices for transfer, reporting and storage of results to prevent loss of sample information.

29.1 FastFinder platform – Minimum IT requirements

The analysis software is available within the FastFinder platform (<u>https://www.ugentec.com/fastfinder/analysis</u>). The minimum IT requirements for installation of the FastFinder platform are listed below.

Hardware requirements

PC (Mac computers are not supported) Processor: 2 GHz, 2 GB RAM Disk space: 10Gb Internet Connection Cable or DSL, proxy not supported Min. screen resolution: 1366x768 pixels

Supported client operating system

Operating system	Supported editions
Windows 10	32-bit and 64-bit
Windows 8.1	32-bit, 64-bit, and ARM
Windows 8	32-bit, 64-bit, and ARM
Windows 7 SP1	32-bit and 64-bit
Windows Vista SP2	2 32-bit and 64-bit

Supported browsers

FastFinder Administrator account users require one of the following:

- Internet Explorer 11 or newer
- Microsoft Edge 25 or newer
- Firefox 45 or newer
- Google Chrome 47 or newer.

It may run on older versions, but these are not officially supported.

Software requirements

To use the FastFinder software, at least .NET 4.6.1 is necessary. For more information about the .NET framework, please visit the Microsoft Windows help pages.

Antivirus settings

Your antivirus software might put the FastFinder installer (UgenTec.FastFinder.Installer.exe) in quarantine. Please add this file to the antivirus whitelist. Example: Symantec (Risk: WS.Reputation.1)

Firewall requirements

https Connections should be allowed to *.fastfinderplatform.com:443

For further detailed instructions on the **FastFinder** platform, refer to the **FastFinder Instructions For Use** accessible from the **Help** menu.

To access the Help menu

- Open the start menu
- Select

or Help section and then select Product Documentation followed by Instructions For Use

NEED HELP? In the help section you can consult the user manual, go to the admin and contact us on tech@sneedex.com.au	Product documentation Help centre Go to admin		
Help section	Terms of use	About	Release notes

29.2 Device set up (new user or device)

Refer to the FastFinder Instructions For Use for detailed instructions to set up device, accessible from the Help menu

Open FastFinder

- Select Devices from the workflow bar
 - > Select Add
 - > Select a file (run file) for the new device
- To change the Current directory
 - > Select Browse and select the folder containing relevant files
 - > Select Next
- Add device information
 - > Select Save

29.2.1 Colour Compensation

For LC480 II and z 480 devices, a colour compensation file must be added to the device

- Select the LC480 II or z 480 device
 - > In the Colour Compensation section, select +
 - > Select the colour compensation file for the device from the directory

NOTE: See Section 20.2 and Section 22.2 for more information on Colour Compensation

- To change the Current directory
 - > Select Browse and select the folder containing relevant files
- Select Next
- Select ResistancePlus GC (LC480) or ResistancePlus GC (z480) from the list to link to this assay -
- Select Save

New or additional colour compensation files can be added to a device or deactivated as needed.

In the device colour compensation section

- Next to the file name, select -
- Active to activate or deactivate a colour compensation file for an assay Select
- Select Save

29.3 Assay plug-in (new user)

Refer to the FastFinder Instructions For Use for detailed instructions to set up assays, accessible from the Help menu

Open FastFinder

- Select Assays from the workflow bar -
- Select Add -
 - For LC480 II > Select ResistancePlus GC (LC480) from the list >
 - For z 480 > Select ResistancePlus GC (z480) from the list >
 - For 7500 Fast and 7500 Fast Dx > Select ResistancePlus GC (7500) from the list >
 - For CFX96 IVD and CFX96 Touch > Select ResistancePlus GC (CFX) from the list >
- Select Add

>

To activate or de-activate versions of an assay plug-in

- In General assav information >
- Select Versions >
 - Inactiv

Active to activate or deactivate the version of the assay

Select Select Save >

29.4 Sample naming

Sample nametags can be assigned to an assay plug-in to automate detection of wells and sample types for analysis.

Select Assays from the workflow bar

- In the Sample type nametags (prefix), select
 - to add a nametag to define sample type nametags (Negative control, Positive control/s and Regular sample) Select >
 - Add desired word, acronym or letter to text box >
 - Select Save >
- In the Mix definition nametags (suffix), select

- > Select 🖽 to add a nametag to define the mix name
- > Add desired word, acronym or letter to text box
- > Select Save

- In the instrument software (before or after run is completed) assign the same nametag to appropriate wells

- > For LC480 II see Section 20 and Section 21 for instructions on programming sample nametags in the run file
- > For z 480 see Section 22 for instructions on programming sample nametags in the run file
- > For 7500 Fast see Section 23 and Section 24 for instructions on programming sample nametags in the run file
- > For 7500 Fast Dx see Section 25 and Section 26 for instructions on programming sample nametags in the run file

> For CFX96 IVD and CFX96 Touch see Section 27 and Section 28 for instructions on programming sample nametags in the run file

NOTE: Sample nametags are case sensitive. The nametag must match exactly to those assigned in the run file.

29.5 Adding mix lot numbers

Mix lot numbers can be assigned to the assay to enable traceability of reagents

- Select Assays from the workflow bar
 - > In the Assay Lot: select 📕 to add a new lot or select 📝 to edit an existing lot
 - > Once added, lot numbers will become available in the analysis module
 - > Select Show all lots Show only active lots to show all lot numbers or only active lot numbers

29.6 Analysis

Select Analyses from the workflow bar to start a new analysis

Select datafile

Search for the file to be uploaded for analysis from a specified directory

- To change the Current directory
 - > Select **Browse** and select the folder containing relevant files
- Select run (data) file from the list
 - > Select Next step

2 Assign assay(s)

Assign the assay information to the plate manually if sample naming has not been set up in Assays module

- For LC480 II > Select ResistancePlus GC (LC480)
- For z480 > Select ResistancePlus GC (z480)
- For 7500 Fast and 7500 Fast Dx > Select ResistancePlus GC (7500)
- For CFX96 IVD and CFX96 Touch > Select ResistancePlus GC (CFX)
- Select wells and assign as:
 - > Regular sample (S)

- > Negative control (N)
- > Positive control (GC gyrA S91F mutant) (Pa)
- > Positive control (GC gyrA S91 wild type) (Pb)
- Select Next step

To save the plate layout as a template for future use

- Select wells and assign types of samples

to Save template

- Specify template name for future use
 - > Select Save

Select

To load a previously saved plate template

Υ

- Select

>

to Load plate template

- > Select template from drop down menu
- > Check the box to load sample types specified within the plate template
- > Select Load

3 Configure assay(s)

- For LC480 II > Select ResistancePlus GC (LC480)
 - > Select the appropriate colour compensation file from the drop down menu
 - > Select **Assay Lot** from the drop down menu
 - > Select Analyse
- For z 480 > Select ResistancePlus GC (z480)
 - > Select the appropriate colour compensation file from the drop-down menu
 - > Select **Assay Lot** from the drop-down menu
 - > Select Analyse
- For 7500 Fast and 7500 Fast Dx > Select ResistancePlus GC (7500)
 - > Select **Assay Lot** from the drop down menu
 - > Select Analyse
- For CFX96 IVD and CFX96 Touch > Select ResistancePlus GC (CFX)
 - > Select **Assay Lot** from the drop down menu
 - > Select Analyse

29.7 Results

See Table 73 for a summary of possible reported sample results.

NOTE: It is highly recommended that amplification curves should be confirmed for all positive samples.

To resolve any uncertain results ()

- Select Resolve tab
- Select sample to resolve
- Inspect amplification curves for uncertain results

>	Select	Ref to plot a reference curve on the graph
>	Select	P to plot a positive control on the graph
>	Select	N to plot a negative control on the graph
>	Select	to confirm suggested result or select i a different option
0		weather and he are also have and a did a summaria.

- Confirm as **Negative** or **Inconclusive** and add comments

NOTE: For inconclusive samples, re-extract and re-test the samples once. If sample result remains Inconclusive, collect a new sample to re-test.

To finalise analysis and prevent further user edits

- > Select Authorise Analysis
- > Select **Yes** to confirm
- To reject analysis or restart the analysis
 - > Select Restart Analysis or Reject Analysis
 - > Select option to confirm

29.8 Reference curve

A reference curve can be saved and used to compare to samples on the same or across different plates

- Select the sample of interest in either the Well Details or Target Details menu
- From the amplification graph menu > Select
 - > Select the check box for the channel of interest and add a label
 - > Select **Save** to add signal as reference curve

This reference curve will now appear linked to the assay in the Assays menu and can be inactivated at any time.

29.9 Overview of results

Та	ble 73.	Example results fo	r interpretation of the	ResistanceP	Plus [®] GC analysis softw	vare
	Well	Name	Assay	Result	Cq Values^	Overall results
	A1	Sample 1	ResistancePlus GC	Negative	CHANNEL D: 25.31	Sample 1 - Negative N. gonorrhoeae not detected, IC valid.
	A2	Sample 2	ResistancePlus GC	Positive	CHANNEL A: 19.60 CHANNEL B: 18.89 CHANNEL C: 28.49 CHANNEL D: 28.04 CHANNEL E: 17.14	Sample 2 - Positive N. gonorrhoeae detected, gyrA mutation not detected.

	A3	Sample 3	ResistancePlus GC	Positive	CHANNEL A: 31.34 CHANNEL B: 27.02 CHANNEL D: 27.91 CHANNEL E: 25.18	Sample 3 - Positive N. gonorrhoeae detected, gyrA mutation not detected.
	A4	Sample 4	ResistancePlus GC	Positive	CHANNEL A: 33.51 CHANNEL B: 20.92 CHANNEL C: 24.40 CHANNEL D: 27.62 CHANNEL E: 22.90	Sample 4 - Positive N. gonorrhoeae detected, gyrA mutation detected.
	A5	Sample 5	ResistancePlus GC	Positive	CHANNEL B: 26.60 CHANNEL C: 30.76 CHANNEL D: 28.20 CHANNEL E: 27.81	Sample 5 - Positive N. gonorrhoeae detected, gyrA mutation detected.
	A6	Sample 6	ResistancePlus GC	Invalid	CHANNEL D: 36.71	Sample 6 - Invalid IC invalid, repeat test. ¹
	A7	Sample 7	ResistancePlus GC	Positive	CHANNEL D: 27.65 CHANNEL E: 32.35	Sample 7 - Positive N. gonorrhoeae detected, gyrA indeterminate.
()	C1	Sample 8 (Flagged to resolve)	ResistancePlus GC	Positive	CHANNEL A: 38.99 ² CHANNEL B: 20.40 CHANNEL D: 26.80 CHANNEL E: 21.50	Sample 8 - Positive N. gonorrhoeae detected, gyrA mutation not detected.
	C1	Sample 8 (Resolve to Inconclusive)	ResistancePlus GC	Invalid	CHANNEL A: 38.99 ³ CHANNEL B: 20.40 CHANNEL D: 26.80 CHANNEL E: 21.50	Sample 8 - Invalid Inconclusive result, repeat test.
	B1	Pa (Mutant type Positive control)	ResistancePlus GC	Positive	CHANNEL A: 30.43 CHANNEL B: 17.38 CHANNEL C: 21.49 CHANNEL E: 17.14	Pa - Positive Positive control valid.
	B2	Pb (Wild type Positive control)	ResistancePlus GC	Positive	CHANNEL A: 18.62 CHANNEL B: 15.50 CHANNEL C: 32.52 CHANNEL E: 14.22	Pb - Positive Positive control valid.
	B3	N (Negative control)	ResistancePlus GC	Negative		N - Negative Negative control valid.

^ Refer to instrument Table 7 for channel/target information

 $^{\rm 1}$ For IC invalid and inconclusive samples, re-extract and re-test

² A sample with an uncertain Cq will be flagged for resolution with (!)

³ A sample resolved to be Inconclusive will be flagged with 💌

29.10 Exporting results

To export results

> Select Exports in the workflow bar

> Export one or more of the following report types: Cq values list (CSV), Results (CSV), Generic Amplification CSV or the appropriate LIS-integration file.

> Select Exports

To download exports

- > Select **Reports** in the workflow bar
- > Select files and save

Alternatively export a customised report

> Export Amplification Curve Analysis (PDF)

- > Select desired included information (graphs, audit trail, results overview)
- > Select desired report settings to customise sample order
- > Select Exports
- > Open in Report Viewer to view, save and print

29.11 Control example graphs

The following examples show the amplification curves (baseline-corrected amplification curves) and the Results overview from the **ResistancePlus®** GC (7500) analysis software for control sample types.

29.11.1 Positive Control (GC gyrA S91F mutant) (Pa)

Well	Name	Assay	Result	Cq Values	Overall results
				CHANNEL A: 29.97	
H10	Pa	ResistancePlus GC (7500)	Positive	CHANNEL B: 22.98	Pa - Positive Positive control valid.
				CHANNEL C: 26.60	
				CHANNEL E: 22.04	

29.11.2 Positive Control (GC gyrA S91 wild type) (Pb)

CHANNEL A CHANNEL B CHANNEL C CHANNEL D CHANNEL E

Well	Name	Assay	Result	Cq Values	Overall results
				CHANNEL A: 23.58	
H11	Pb	ResistancePlus GC (7500)	Positive	CHANNEL B: 22.45	Pb - Positive Positive control valid.
				CHANNEL C: 33.96	
				CHANNEL E: 21.92	

29.11.3 Negative Control (N)

Well	Name	Assay	Result	Cq Values	Overall results
H12	Ν	ResistancePlus GC (7500)	Negative		N - Negative Negative control valid.

29.12 Examples

29.12.1 High copy N. gonorrhoeae positive, gyrA wild type

CHANNEL A CHANNEL B CHANNEL C CHANNEL D CHANNEL E

Well	Name	Assay	Result	Cq Values	Overall results
A1	Sample 11	ResistancePlus GC (7500)	Positive	CHANNEL A: 17.48 CHANNEL B: 14.92 CHANNEL C: 32.36 CHANNEL D: 26.80 CHANNEL E: 11.77	Sample 11 - Positive N. gonorrhoeae detected, gyrA mutation not detected.

29.12.2 High copy N. gonorrhoeae positive, gyrA mutant

Well	Name	Assay	Result	Cq Values	Overall results
G7	Sample 12	ResistancePlus GC (7500)	Positive	CHANNEL A: 28.98 CHANNEL B: 14.94 CHANNEL C: 17.64 CHANNEL D: 26.74 CHANNEL E: 12.59	Sample 12 - Positive N. gonorrhoeae detected, gyrA mutation detected.

29.12.3 Low copy N. gonorrhoeae positive, gyrA wild type

CHANNEL A CHANNEL B CHANNEL C CHANNEL D CHANNEL E

Well	Name	Assay	Result	Cq Values	Overall results
B2	Sample 13	ResistancePlus GC (7500)	Positive	CHANNEL A: 32.86 CHANNEL B: 29.29 CHANNEL D: 28.28 CHANNEL E: 29.90	Sample 13 - Positive N. gonorrhoeae detected, gyrA mutation not detected.

29.12.4 Low copy N. gonorrhoeae positive, gyrA mutant

Well	Name	Assay	Result	Cq Values	Overall results
C5	Sample 14	ResistancePlus GC (7500)	Positive	CHANNEL B: 26.33 CHANNEL C: 31.28 CHANNEL D: 28.30 CHANNEL E: 24.74	Sample 14 - Positive N. gonorrhoeae detected, gyrA mutation detected.

29.12.5 N. gonorrhoeae positive, gyrA indeterminate

CHANNEL A CHANNEL B CHANNEL C CHANNEL D CHANNEL E

Well	Name	Assay	Result	Cq Values	Overall results
A7	Sample 15	ResistancePlus GC (7500)	Positive	CHANNEL B: 29.27 CHANNEL D: 28.55 CHANNEL E: 28.97	Sample 15 - Positive N. gonorrhoeae detected, gyrA indeterminate.

29.12.6 Sample to resolve - confirm negative

In this example, the CHANNEL D was flagged for resolution, with the software suggesting the signal is Negative.

CHANNEL D

Select Ref to plot a reference curve for the channel. After inspection of the amplification curves (shown below) it can be seen that there is no amplification in the channel, where the **green** signal is the signal flagged and the **grey** the reference curve.

CHANNEL D

The negative result is confirmed by selecting the icon, and the change is saved. The resolved result is shown below.

Resolved result as shown in the resolve me
--

Target	Channel	Cq	Curve result	5
gyrA-S91	465-510	23.29	Positive	
porA	533-580	19.95	Positive	
gyrA-S91F	533-610	34.49	Positive	
IC	533-640	-	Negative 💉	Ę
ора	618-660	16.98	Positive	

Final sample interpretation as seen in the ResistancePlus GC (7500) software (Result Overview)

Well	Name	Assay	Result	Cq Values	Overall results
A1	Sample x	ResistancePlus GC (7500)	Positive	CHANNEL A: 23.29 CHANNEL B: 19.95 CHANNEL C: 34.49 CHANNEL E: 16.98	Sample x - Positive N. gonorrhoeae detected, gyrA mutation not detected.

30 Appendix B: Instructions for testing ResistancePlus® GC at 30 µl reaction volume

The *ResistancePlus*[®] GC kit can optionally be tested at a final reaction volume of 30 μl if sensitivity is a concern. Refer to **Section 11.5** for instructions for testing at a final reaction volume of 20 μl.

30.1 Preparation of PCR

30.1.1 Master mix preparation – Samples extracted with SpeeDx Internal Control Cells

Note: Before use of reagents, thaw completely, and mix thoroughly by briefly vortexing.

For a 30 µl reaction volume, 20 µl of Master Mix and 10 µl sample is required. Prepare Master Mix as outlined in Table 74.

- Pipette the Master Mix into the PCR plate and then add extracted sample to the reaction.
- Positive and negative controls should be run on each plate.
- Seal, then centrifuge the plate and transfer to thermocycler.

Table 74. Master Mix - 30 μl reaction							
Reagent	Concentration	Volume per 30 µl reaction (µl)					
Nuclease Free Water	N/A	2.0					
Plex Mastermix (BLUE)	2x	15.0					
GC+gyrA Mix (BROWN)	20x	1.5					
Control Mix* (WHITE)	20x	1.5					
Total volume (µl)	20.0						
Add 10 μI sample for a final volume of 30 μI							

* The Control Mix included in each kit is specific to the PCR instrument used; refer to Table 1 and Table 2 for correct Control Mix to use

30.1.2 Master mix stability

The master mix can be prepared in bulk and stored at -20°C for up to 4 weeks or stored at 4°C for up to 1 week.

31 Glossary

European Conformity For In Vitro Diagnostic Use

Authorised Representative In the European Community

Batch code

Date of manufacture

Temperature limitation

European Importer

Contains sufficient for xxx determinations

United Kingdom Conformity Assessment Mark

Use by Date

SpeeDx products may be covered by one or more local or foreign patents. Please see www.plexpcr.com/patents for comprehensive patent information.

PlexPCR®, ResistancePlus®, PlexPrime® and PlexZyme® are trademarks belonging to SpeeDx. Other copyright and trademarks are the property of the respective owner.

© Copyright 2022 SpeeDx Pty. Ltd.