

Evaluation of ResistancePlus GC to Inform Ciprofloxacin Treatment of Gonorrhoea

> Litty Tan Director of R&D <u>littyt@speedx.com.au</u>

Evolution of Antimicrobial Resistance (AMR) in SpeeDx Neisseria gonorrhoeae (GC)

Antibiotics used for treatment

WHO Global Action Plan for AMR GC

- Increase awareness on correct antibiotic use
- Seffective prevention, diagnosis and control
- 8 Monitor treatment failures
- Strengthen AMR surveillance
- § Effective drug regulations and prescription policies

Global action plan

to control the spread and impact of antimicrobial resistance in *Neisseria gonorrhoeae*

() World Health Organization

- Solution 8 Newer molecular methods for monitoring and detecting AMR
- Solution Alternative effective treatment regimens

Molecular detection of genetic markers for resistance/susceptibility could allow 'older' drugs to be used for gonorrhoea treatment

GC Susceptibility to Ciprofloxacin

% Susceptible to Ciprofloxacin

Heffernan H et al. (2015) Antimicrobial resistance and molecular epidemiology of gonococci in NZ, 2014-15 Kirkcaldy RD et al. (2016) MMWR Surveillance Summaries. July 15, 2016 / 65(7);1–19 Lahra MM et al. (2017) Australian Gonococcal Surveillance Programme Annual Report, 2017

GC Mechanisms of Fluoroquinolone Resistance SpeeDx

- Fluoroquinolones were predominant GC treatment in 1990s
 - 2007 No longer recommended
- § Quinolones act by inhibition of DNA gyrase and topoisomerase IV
 - DNA gyrase heterotetramer of GyrA and GyrB
 - Topoisomerase IV heterotetramer of ParC and ParE
- Bacteria develop resistance through mutations in the QRDR (quinolone resistance determining region)
 - GC: GyrA (aa positions 91, 95) and ParC (87)

GyrA Genotype Predicts Cipro Resistance in GC SpeeDx

Genomic Epidemiology in US, 2000-2013 isolates

Grad et al. JID 2016;214:1579–87

GyrA Genotype	Predictive Value	
\$91F	PPV of Ciprofloxacin Resistance = 98%	
S91 WT	NPV of Ciprofloxacin Susceptibility = 99%	

Genomic Survey in Europe, 2013 isolates

Harris et al. Lancet Infect Dis, published online May 15, 2018

GyrA Genotype Predicts Cipro Resistance in GC **SpeeDx**

Genomic Epidemiology in US, 2000-2013 isolates

Grad et al. JID 2016;214:1579–87

Genomic Survey in Europe, 2013 isolates

Harris et al. Lancet Infect Dis, published online May 15, 2018

GyrA S91/S91F is highly predictive of ciprofloxacin susceptibility/resistance

GC Molecular Diagnostics With gyrA Genotyping SpeeDx Can Guide Ciprofloxacin Treatment

Advantages

- Oral treatment preferred
- Antibiotic stewardship of ceftriaxone
- Utilize existing drug while new drugs are still in development
- Pooled estimate of real-time PCR gyrA genotyping tests for predicting GC susceptibility to ciprofloxacin

Allan-Blitz et al. Sex Transm Dis. 2017 May;44(5):261-265.

- Sensitivity: 98.2% (95% CI, 96.5–99.1%), Specificity: 98.6% (95% CI, 97.0–99.3%)
- UCLA Health System has implemented a gyrA molecular assay to identify patients for ciprofloxacin treatment

Allan-Blitz et al. Sex Transm Dis. 2018 Apr;45(4):e18.

• 100% Ciprofloxacin cure rate for gyrA WT (n=25; 7 urethral, 7 pharyngeal, 7 rectal, 4 genital)

PlexPCR® Technical Advantages

Specific amplification and detection

Universal probe for easy multiplexing

Maintains sensitivity

Tan et al PLoS ONE (2017) and Patent: WO 2013/123552

Ideal molecular diagnostic technology for multiplexed detection of resistance/susceptibility markers

ResistancePlus GC

- GC detection and ciprofloxacin resistance/susceptibility information Rapid qPCR format (<1.5 hours) Direct from clinical specimens
- Specimen Types Urine, Swabs

	Channel	Target	
	1	N. gonorrhoeae (opa)	
	2	N. gonorrhoeae (porA)	
1 Well	3	gyrA S91 wild type	
	4	gyrA S91F mutation	
	5	Internal Control	

ResistancePlus GC is a molecular diagnostic test for ciprofloxacin resistance/susceptibility

ResistancePlus GC (beta) Analytical Performance SpeeDx

Solution Sensitivity

- GC gyrA S91 wildtype 15 geq/reaction
- GC gyrA S91F mutant 15 geq/reaction

S Analytical specificity

- 100% specificity:
 - Neisseria spp. isolates
 - Other organisms found in genital/throat/rectal sites

ResistancePlus GC (beta) on GC Clinical Isolates SpeeDx

Solution Section 2012 Section 2012 Section 2012 Section 2012

	WGS			Ciprofloxacin AST		xacin AST	
		S91F mut	S91 WT			Resistant (R)	Susceptible (S)
X	S91F mut	28	0	×	S91F mut	27	1*
Jee[S91 WT	0	42	bee[S91 WT	0	42
Sp	Total	28	42	SF	Total	27	43
Sensitivity 100.0% (95% CI 87.7-100.0%)			Sensitivity	100.0% (95% CI 87.7-100.0%)			
Specificity 100.0% (95% CI 91.4-100.0%)			Specificity	97 (95% CI 8	.7% 7.7-99.9%)		

* LS – less susceptible (S91F mutation by WGS)

High concordance to gyrA genotype & ciprofloxacin R/S phenotype

ResistancePlus GC (beta) Clinical Performance

Survey States of States and Centre for Clinical Research (Brisbane, Australia)

SpeeDx

§ 416 specimens from 2017

	Urine	Genital	Throat	Rectal/ Anal	Other/ unknown	Total
Male	27	11	122	28	2	190
Female	18	184	22	1	1	226
Total	45	195	144	29	3	416

ResistancePlus GC (beta) Clinical Performance

Survey States of Queensland Centre for Clinical Research (Brisbane, Australia)

GC detection		GC Clinical Results		
		+	-	
×	+	123	1	
peeD	-	4	288	
S	Total	127	289	
Sensitivity		96.9% (95% CI 92.1-99.1%)		
	Specificity	99 (95% CI 98	.7% 3.1-100.0%)	

gyrA detection		In-house gyrA qPCR		
		Mutant	Wild type	
	Mutant	20	0	
SpeeDx	Wild type	0	70	
	Indeterminate	0	1	
	Total	20	71	
Sensitivity		100.0% (95% Cl 83.2-100.0%)		
Specificity		98.6% (95% CI 92.4-100.0%)		

eeDx

Excellent clinical sensitivity and specificity

September 2018 Expected date for CE-IVD (Sept 2018)

§ GRAND2 – GC clinical study

Potential Implementation Pathways

Acknowledgements

UQCCR, Australia

- David Whiley
- Lebogang Mhango
- 8 Ella Trembizki

SpeeDx, Australia

- § Samantha Walker
- 8 Madeline Windsor
- Simon Erskine
- 8 Elisa Mokany
- Solin Denver

Come and visit SpeeDx Booth #24